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ABSTRACT: Production of organic chemicals (OCs) is increasing exponentially, and
some OCs biomagnify through food webs to potentially toxic levels. Biomagnification
under field conditions is best described by trophic magnification factors (TMFs; per
trophic level change in log-concentration of a chemical) which have been measured for
more than two decades. Syntheses of TMF behavior relative to chemical traits and
ecosystem properties are lacking. We analyzed >1500 TMFs to identify OCs predisposed
to biomagnify and to assess ecosystem vulnerability. The highest TMFs were for OCs
that are slowly metabolized by animals (metabolic rate kM < 0.01 day−1) and are
moderately hydrophobic (log KOW 6−8). TMFs were more variable in marine than
freshwaters, unrelated to latitude, and highest in food webs containing endotherms. We
modeled the probability that any OC would biomagnify as a combined function of KOW
and kM. Probability is greatest (∼100%) for slowly metabolized compounds, regardless of
KOW, and lowest for chemicals with rapid transformation rates (kM > 0.2 day−1). This
probabilistic model provides a new global tool for screening existing and new OCs for
their biomagnification potential.

■ INTRODUCTION

Ubiquitous use of organic chemicals (OCs) threatens
ecosystem health at regional and continental scales.1 Chemical
pollution is one of nine human-related activities threatening to
push the earth beyond established “planetary boundaries” (the
safe operating space for humanity with respect to Earth
systems).2 Quantitative thresholds are established for bounda-
ries such as climate change and nutrient pollution (i.e., CO2
concentration and phosphorus loading), but thresholds for
chemical pollution (e.g., amount of OCs emitted or their
accumulation in the environment) remain undefined.2,3 Efforts
to explore this boundary are stymied by large numbers of
emitted chemicals and chemical mixtures, by complex
interrelationships between emissions, environmental concen-
trations and exposures among ecosystems, and by their wide-
ranging effects on biota.4 A key challenge in this endeavor is to
develop the knowledge base and techniques to screen chemicals
that are predisposed to becoming global problems before they
are emitted.5,6

The persistence (P), bioaccumulation potential (B) and
toxicity (T) of synthetic chemicals dictate their risk to the
environment and humans. Long-lived compounds that increase
to potentially toxic concentrations along food webs (bio-
magnification) face scrutiny from regulators because of their
likely adverse impacts at multiple levels of biological
organization.7 While many lines of evidence are used to classify
substances as bioaccumulative, there has been a recent shift

toward Trophic Magnification Factors (TMFs; per trophic level
(TL) change in the log-concentration of a chemical) as the
most conclusive evidence of biomagnification in food webs.8−10

TMFs are calculated using stable isotope ratios of nitrogen
(15N/14N; expressed as δ15N) as an indicator of TL because
δ15N increases predictably (approximately 3.4‰) with each
trophic step.11 OCs that have been in commerce for sufficient
time can be measured in various food web components across
diverse systems, allowing for calculation and broad-scale
comparisons of TMFs. The many studies conducted over the
past two decades show variable TMFs among and within OCs
and offer an opportunity to synthesize these efforts to yield new
insights into key drivers of contaminant biomagnification (such
as was recently conducted for another priority pollutant,
mercury)12 and to contribute to screening techniques for PBT
chemicals5,6.
Various factors are proposed to govern the biomagnification

of OCs. Chemical properties, notably hydrophobicity or
fugacity capacity in different media,13 as estimated by the
octanol−water partition coefficient (KOW), are key predictors of
bioconcentration factors (BCFs, the ratio of the chemical in an
organisms to that in water)14 and TMFs,15 typically with higher
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TMFs for higher KOW chemicals. In contrast, chemicals with
high metabolic biotransformation rates (kM),

16 are less likely to
biomagnify in higher-trophic-level organisms even if they have
molecular structures (and KOW) conducive to partitioning to
lipids.17 Biological factors believed to be important include
growth rates linked to ambient temperatures (i.e., latitude)18

and energetic requirements of organisms, with endothermic
animals more likely to biomagnify chemicals than ectothermic
species19,20 because the latter have greater food consumption
rates for a given body size.21 It is unknown whether there are
global patterns of TMFs that can be explained by both chemical
properties and their receiving environments and food webs.
To assess the relative importance of chemical, ecological,

biological, and environmental factors in determining TMFs, we
assembled a database of published values from studies
beginning in 1992. We first identified major gaps in the
current understanding of OCs by highlighting where more
TMF studies are needed and which compound classes are
underrepresented. We then developed a global statistical model
of TMFs for OCs as a function of their KOW and kM. Based on
earlier synthetic analyses of BCFs and bioaccumulation factors
(BAFs, accumulation of chemicals in organisms by all exposure
pathways)14, we predicted peaks in TMFs near log KOW ≈ 7.
This is the approximate threshold above which large molecules
can exhibit declining bioavailability and dietary uptake
efficiency (ref 22 but see ref 23). Further, we predicted a
negative relationship between TMF and kM. Because kM
accounts for a large amount of residual variation in BAF vs
log KOW relationships,24 we developed a global multivariate
model of all TMFs using both log KOW and log kM. Next, we
developed separate TMF models for different ecosystems
(freshwater versus marine), climates (tropical, temperate, and
Arctic), and food web types (food webs containing only
ectotherms vs those that also had endotherms) to explore
context-dependent patterns in biomagnification. We predicted,
for example, that food webs containing endotherms, as are
commonly studied in Arctic marine environments, would have
higher TMFs. Finally, we used the empirical relationship
between log KOW, log kM, and TMFs to develop a probabilistic
model calculating the likelihood that any OC within the
observed range of log KOW and log kM will biomagnify if
released to the global environment.

■ MATERIALS AND METHODS
We tested whether compound KOW and kM, food web type
(presence of endotherms and/or ectotherms), climate setting
(tropical, temperate, Arctic), and ecosystem type (freshwater or
marine) affect TMFs for OCs. TMFs are calculated as the
antilog of the slope of the log or ln [contaminant] vs TL
relationship, where TL is derived from δ15N (ref 11 and
Supporting Information (SI) Methods). We screened the
literature for TMF studies published between 1992 and 2013
(see SI Methods for search criteria). A full description of
criteria for inclusion or exclusion from the analysis is provided
in the SI Methods. Our approach yielded 69 studies for 481
chemicals belonging to 10 broad classes of organic compounds
(Table S1). Of these, we found n = 1591 TMF values for which
we could obtain log KOW values and n = 1533 values with both
log KOW and kM values. Details for collecting KOW and kM values
are provided in SI Methods. Briefly, in most cases we obtained
KOW values directly from the TMF studies. When KOW was not
reported, we retrieved it from either other published sources
(e.g., ref 25), from online databases such as ChemSpider

(http://www.chemspider.com/), or by using KOWWIN
applications within the U.S. EPA’s EPISuite 4.1 (Estimations
Program Interface; http://www.epa.gov/oppt/exposure/pubs/
episuite.htm). For compound-specific kM, we used values
standardized for a 10 g fish, obtaining median estimates from
a summary database16 when possible and the BCFBAF function
in EPIsuite 4.1 to estimate the remainder, drawing structures as
necessary. Here we used kM values derived solely for one group
of organisms (fish), but kM values can vary widely across
organisms included among the many TMF studies in this meta-
analysis (e.g., endotherms have higher metabolic capabilities
than fish). However, kM has not been measured for the full
range of organisms such as invertebrates and marine mammals.
Thus, we use kM within our modeling framework as a surrogate
for the overall metabolizability of a compound by various types
of organisms within and among food webs. These kM values
span a large gradient (>6 orders of magnitude) of
metabolizability among chemicals included in the analysis.
We categorized TMF studies as occurring in either

freshwater (rivers, wetlands, and lakes) or marine (marsh,
estuarine, brackish, and offshore) ecosystems. Climate setting
was categorized as Arctic (>60° latitude), temperate (30−60°)
or tropical (<30°), and food web type as “cold” (those with
ectotherms only), “warm” (those with endotherms only), or
“whole” (those containing ectotherms and endotherms).15

Statistical Analyses. We used quantile regression26,27 to
assess relationships of log10 TMF with log10 KOW, log10 kM, and
environmental and ecological factors (ecosystem type, climate,
and food web type). Quantile regression is useful for data sets
where the response variable (TMF in this case) demonstrates a
high degree of variability, and we used this approach to
determine if the response of TMF was similar across the full
range of the TMF distribution (e.g., the median and upper and
lower edges) and to determine if these trends were consistent
among ecosystems, climates, and food webs. We developed
models for the global data set, a two-group classification of
marine and freshwater ecosystems, and a four-group classi-
fication of freshwater temperate cold, marine temperate cold,
marine temperate whole, and marine Arctic whole food webs as
they allowed estimation with sufficient observations in each
group.
For each of these classifications, we estimated τ ∈ {0.05,

0.10, 0.25, 0.50, 0.75, 0.90, and 0.95} quantiles in the linear
quantile regression package “quantreg” for the R statistical
environment.28 Our initial estimates of how log10TMF changed
with log10 KOW for the global data set suggested that piecewise
linear relationships with different slopes changing around log10
KOW = 5 and 7 were reasonable approximations (SI Figure S1).
Our estimates pooled all observations and used a linear quantile
smoothing spline estimator that optimized the number and
location (with the smoothing parameter λ = 1) of knots (e.g.,
break points or thresholds) in the splines independently for
each quantile.
Based on these initial estimates, we determined that a simple

linear b-spline function that had common knots for all seven
quantiles could be estimated (SI Figure S1). We used b-splines
in the conventional linear quantile regression model, trying
various combinations of knots in a neighborhood of values
around log10 KOW common to all seven quantiles (model 1, SI
Figure S2). We compared b-spline quantile estimates with
Akaike Information Criterion (AIC) to select a model with
common knot values across quantiles that provided estimates
that were close to optimal (minimizing AIC) across all seven
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quantiles.29 Next, we estimated linear quantile regression
models for the global data set with log10 kM as a predictor
(model 2, SI Figure S3), and then by including both the linear
log10 kM predictor and the b-spline predictors for log10 KOW
(model 3, SI Figure S4). Though there is a general negative
relationship between log10 kM and log10 KOW,

16 the correlation
of these two variables in our data set was low (r = −0.23),
providing multiple regression estimates that were almost an
orthogonal combination of the separate linear relationships for
the two predictors. We compared these three models with AIC
differences (ΔAIC scaled from the null model with just an
intercept) by τ and computed coefficients of determination
(R1) for the quantile estimates to determine the proportion of
variation explained by the modeled quantiles (SI Figure S5).
After establishing the model framework for the global data

set, we estimated quantile regression models with the same
choice of knots for b-splines of log10 KOW across multiple
groups classified by environmental factors (marine versus
freshwater and for the four combinations of environment,
climate and food web type as described above). This was done
in a common model by including the groups, the linear b-spline
functions of log10 KOW and linear log10 kM predictors, and their
interactions. This allowed separate linear relationships between
log10TMF and log10 KOW and log10 kM for each group, but with
the constraint that the knots in the b-spline functions were held
constant across groups to facilitate statistical comparisons.
Improvements in model fit by grouping data according to
environmental factors were assessed by comparing AIC values
(ΔAIC) by quantile (SI Figure S5). Because quantiles are
equivariant to monotonic transformations such as log10 (TMF),
it is possible to back-transform estimates made in the
transformed scale to the original scale (TMF) without bias or
loss of information.
Because of the regulatory importance of TMF > 1,10 we

graphed contours of the probability of TMF > 1 for
combinations of log10 kM and log10 KOW for the various
compounds and quantiles using the global data set. These
probabilities are based on the estimated proportion of the
cumulative distribution with TMF > 1 (log10 TMF > 0)
conditional on log10 kM and log10 KOW provided by the quantile
estimates (τ ∈{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95}),
where 1 − τ is the proportion of the cumulative distribution
exceeding the τth quantile estimate. These upper proportions
of the cumulative distribution provide distribution-free, lower
one-sided (1 − τ) × 100% prediction intervals of TMF for a
single compound at a given combination of log10 kM and log10
KOW values based on the estimated quantile regression model.
Our contour graphs show where the quantile estimates exceed
TMF = 1 and thus, by definition, where the lower bounds of
the (1 − τ) × 100% lower prediction intervals for TMF were
>1. For example, the 95% probability contour includes the
combinations of log10 kM and log10 KOW where τ = 0.05 quantile
estimates of TMF were >1. The interpretation of the empirical
cumulative distribution function estimated by the quantiles as
probabilities is predicated on the assumption that sampling
frequencies approximate those that would be obtained under
random sampling, a condition that is violated to an unknown
degree in any meta-analysis.

■ RESULTS
Nearly all TMF studies were in the northern hemisphere (only
two in the southern hemisphere), with studies concentrated in
east Asia, northern and eastern Europe, and eastern North

America (SI Figure S6). Most studies were in temperate
climates (89%), followed by Arctic climates (9%), with only 2%
in the tropics. The distribution of TMFs among compound
classes was highly skewed (SI Figure S7). Approximately half
were for polychlorinated biphenyls (PCBs, n = 769), with only
a handful of measurements for other classes such as
pharmaceuticals and personal care products or alkylphenols.

Relationships Among TMF, KOW, and kM. A piecewise
linear b-spline model with knots at log10 KOW = 4.9 and 7.2 was
the best model for estimating changes in log10 TMF with log10
KOW, with common breakpoints across all quantiles (Figure 1A
and SI Figure S1). These estimates provided relatively
homogeneous changes in log10TMF with log10 KOW across
the full range of observations, although with considerable
variation in TMFs (R1 = 0.13 at lower quantiles to R1 = 0.06 at
higher quantiles), increasing to a well-defined peak in TMF at
log10 KOW = 7.2 (Figure 1A and SI Figure S1). There were
negative rates of change in TMFs when log10 KOW was <4.9
(Figure 1A, SI Figure S1). Lower quantiles showed a larger
decline per unit KOW than higher quantiles, but the quantiles
were generally negative with confidence intervals well below
zero except for the higher quantiles (SI Figure S2). These
declines were subtle (10−30%, ΔTMF ≈ 0.1−0.3), and lower
data density at the bottom range of KOW values may limit the
degree to which these relationships are generalizable compared
to compounds with higher KOW. A linear function of log10 kM
provided estimates that explained significant variation in TMF
across quantiles, with negative changes in log10 TMF with
increasing log10 kM for all quantiles (Figure 1B). However, the
TMF model that combined the negative linear relation of log10
kM with the b-spline function of log10 KOW (Figure 1C)
explained a greater proportion of variation in quantiles (R1 =
0.32 at lower quantiles to R1 = 0.11 at higher quantiles) than
either KOW or kM did individually, and this was a better
supported model based on AIC (SI Figure S5). OCs with a
combination of moderate hydrophobicity (log KOW ≈ 6−8)
and slow biotransformation rates (log10 kM < ≈ −1; kM < ≈ 0.1
day−1) consistently biomagnified (Figure 1C and Figure 2).
Uncertainty in estimates was lower for high TMFs, which had
narrower prediction intervals (where mesh panels converge in
Figure 1C) than lower TMFs (where mesh panels diverge in
Figure 1C).
Estimates of TMF as a function of log10 KOW and log10 kM

were improved by incorporating ecosystem type (marine and
freshwater) and calculating separate relationships with the two
predictors between the groups (SI Figure S8). TMFs in
freshwaters were less variable and had fewer extreme values
than marine systems, but the vast majority of freshwater TMFs
were >1 (typically between 1 and 10, Figure 2 and SI Figure
S8). Contour plots of the median log10 TMF estimates across
combinations of log10 kM and log10 KOW indicated that TMFs
for marine food webs had greater negative changes with log10
kM and were more sensitive to changes in log10 KOW than TMFs
for freshwater food webs (Figure 2 and SI Figure S8).
A four-group classification of ecosystem type, climate setting,

and food web type (marine temperate whole, marine temperate
cold, marine Arctic whole, and freshwater temperate cold)
further refined the model. The four-group model increased the
proportion of variation in TMF quantiles explained across
compounds to 41% (R1 = 0.41) at lower quantiles and to 27%
(R1 = 0.27) at higher quantiles and was the best model
according to AIC (SI Figure S5). A preponderance of high
TMFs in marine systems were associated with whole food webs

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b00201
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

C

http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b00201/suppl_file/es6b00201_si_001.pdf
http://dx.doi.org/10.1021/acs.est.6b00201


that include endotherms (marine Arctic whole and marine
temperate whole food webs, Figure 2 and SI Figure S8). For
example, Arctic whole food webs had the highest TMFs among
food web types, and nearly all observations indicated
biomagnification (Figure 2 and SI Figure S8). Though these
food webs had the highest overall TMFs, we found no effect of

latitude on TMFs, whether considering all food webs or
freshwater food webs alone (SI Results and SI Figure S9, Table
S2). Whole food webs typically had higher TMFs than cold
food webs for a given compound regardless of latitude (SI
Figures S9 and S10). This suggests that differences in TMFs we
observed among climate groupings for the entire data set are
likely driven by differential composition of the food webs (e.g.,
food webs that included endotherms) rather than any growth
or physiological changes associated with temperature differ-
ences (e.g., slower growth rates at colder temperatures). Marine
temperate cold food webs had fewer high TMF values than
marine temperate whole food webs, and most of the very low
TMFs were measured in this former category (Figure 2 and SI
Figure S5). However, variability in TMFs for marine temperate
cold food webs was quite high; for example extreme high and
low TMFs were found where log10 KOW ≈7 (SI Figure S8). In
contrast, TMFs in freshwater temperate cold food webs were
less variable (TMF typically between 1 and 10), and most
observations indicated biomagnification (Figure 2 and SI Figure
S8). Few freshwater studies were from tropical or Arctic
climates or for whole food webs, and “freshwater” and
“freshwater temperate cold” models were virtually indistin-
guishable (Figure 2).

Probability of OCs Biomagnifying in Food Webs.
Based upon the estimated quantiles of the distribution of
observations, we calculated the probability of an OC having
TMF > 1 for all combinations of log10 KOW and log10 kM
(Figure 3). Slowly biotransformed OCs with kM < 0.01 d−1

(log10 kM < −2) consistently biomagnified (probability 75−
100%, red and yellow shading in Figure 3) except for the most
hydrophobic compounds (log10 KOW > 8). Examples of OCs
with a high probability of biomagnifying include PCBs,
particularly heavier molecular weight congeners with ≥6
chlorine atoms, and very heavy polybrominated diphenyl ethers
(PBDEs, congeners 196, 197, 203, and 205−208) (SI Table
S1). At the other end of the spectrum, rapidly biotransformed
OCs with kM > 3.2 d−1 (log10 kM > 0.5), such as some of the
phthalates, had a low probability of biomagnifying (probability
ranging from ≈0−10%, blue and purple shading in Figure 3).
Between these extremes is a large combination of chemical
conditions with a substantial probability of TMFs > 1 (yellow
and green shading in Figure 3). For midrange log10 kM values,
the increasing importance of log10 KOW in predicting OCs with
TMFs > 1 is apparent as the right-pointing chevron patterns
corresponding with log10 KOW at 7.2.

■ DISCUSSION
Gobas et al.10 proposed that TMFs are the gold standard for B
assessment. However, after more than two decades of research,
integrating TMFs into regulatory and risk management
decision-making remains a challenge.9,15 A major hurdle is
the lack of well-designed and consistent studies to assess
changes in TMFs among different OCs, across large spatial
scales, and among ecosystems.8 We found that TMFs do vary
predictably with KOW and kM, albeit with considerable variation,
for a wide range of OCs and OC classes. This is similar to
findings for BCFs and BAFs, which have a long history in B
assessment supporting chemical regulation and risk assess-
ments.14 Beyond these effects of KOW and kM, major differences
in TMFs related to ecosystem characteristics emerged. TMFs in
freshwaters (dominated by cold food webs in temperate
climates) were relatively invariant and largely conform to the
median TMF response to KOW and kM at the global scale. In

Figure 1. Estimated quantiles (0.95 = upper red, 0.50 = black, 0.05 =
lower red lines) of log10 TMF as (A) a linear b-spline function of log10
KOW with knots at log10 KOW = 4.9 and 7.2, n = 1,591; (B) a linear
function of log10 kM, n = 1,533; and (C) a linear b-spline function of
log10 KOW (same knots) plus a linear function of log10 kM for n = 1,533
for all studies combined. Black horizontal lines in A and B shows TMF
= 1; values >1 indicate biomagnification. In C, the colored 3D surface
shows the median (τ = 0.50) TMF; gray 3D grids are the 0.05 and
0.95 quantiles. Color shading on the bottom of C is a 2D contour plot
of TMFs for the 0.50 quantile (z dimension represented as colored
contours).
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contrast, TMFs in marine systems were highly variable and
account for the majority of “extreme” observations near the
margins of the TMF distribution. Unusually high TMFs occur
in marine food webs containing endotherms, regardless of

climate, whereas unusually low TMFs occur primarily in marine
temperate food webs containing only ectotherms.
As we predicted in our initial hypothesis, TMFs peaked

around log10 KOW ≈ 7 regardless of ecosystem attributes. For
the 253 chemicals with log10 KOW ranging from 6 to 8, 187
(74%) had TMFs > 1. OCs with log10 KOW < 6 or >8 were
equally likely to demonstrate biodilution (TMFs < 1) or
biomagnification in food webs. These patterns are consistent
with prior findings that processes such as bioconcentration and
respiration are critical for regulating uptake of less hydrophobic
OCs.14,30 Dietary uptake is the dominant process for
compounds with midrange KOWs, and these significant, positive
increases in TMF or BAF to log10 KOW ≈ 7 are observed across
modeling studies, laboratory experiments, and field stud-
ies.14,15,19,31−33 The importance of dietary uptake of these
chemicals with log10 KOW between 6 and 8 is manifest in much
stronger relationships in the OC vs TL models used to calculate
TMFs.15 The declining TMF values at higher KOWs that we
observed are likely due to reduced intestinal absorption of very
large molecules,22 though much remains to be learned about
uptake and elimination of these hydrophobic molecules.23 As
predicted, slowly metabolized OCs were prone to biomagnify
across food webs, confirming that biotransformation is a key
process regulating the bioaccumulation potential of OCs.16

Some variation in the TMF-log10 KOW and log10 kM
relationship was related to ecological factors such as food
web type. High TMFs in whole food webs can be explained in
part by attributes of individual organisms, food web structure,
and differences in chemical behavior in air or water. Food webs
including endotherms tend to be longer (containing multiple
predator trophic levels), thus increasing the likelihood of
detecting a significant, positive slope in the OC versus TL
relationship.8,11 Organisms in Arctic food webs have more lipid-
rich diets than those in warmer climates and are often longer-

Figure 2. Contour plots illustrating the relationship between log10 kM (x axis) and log10 KOW (y axis) with TMFs (z dimension represented as
colored contours). TMFs are mapped separately at the global scale, by ecosystem type (freshwater and marine), and for different food web types
(e.g., marine Arctic whole). Data represent the median (τ = 0.50) TMF value as described in Figure 1.

Figure 3. A 2D contour plot illustrating the probability (%) of TMF >
1 for any OC based upon its combination of log10 kM and log10 KOW
values. Hot colors (red, orange, and yellow) indicate a high probability
of TMFs > 1 and cool coolers (greens, blues) indicate a low
probability of TMFs > 1 based on the upper, 1-sided (1 − τ) × 100%
prediction intervals.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b00201
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

E

http://dx.doi.org/10.1021/acs.est.6b00201


lived, both of which increase OC bioaccumulation and trophic
transfer.30 Adult birds and large mammals generally have a
combination of efficient digestion22 and negligible growth, and
empirical data and models show that these types of organisms
have biomagnification factors 1−2 orders of magnitude higher
than aquatic animals (e.g., invertebrates and fish) with less
efficient digestion and rapid growth.21 Finally, chemicals with
relatively low KOWs but high octanol-air partition coefficients
(KOA) biomagnify to a higher degree in air-breathing organisms
owing to low respiratory elimination rates.33 Compounds with
this combination of KOW and KOA in our data set include
hexachlorobenzene and oxychlordane, and these demonstrated
correspondingly high TMFs in whole food webs (TMF range
hexachlorobenzene 0.5−12.3; oxychlordane 5.6−26.7).
TMFs in freshwater food webs generally described the

median response for the global TMF data set, whereas TMFs
for marine food webs were much more variable. It was difficult
to assess the effect of ecological factors on TMFs in freshwaters,
as the majority of TMFs were measured for a single category
(freshwater temperate cold food webs). However, sufficient
sample sizes were available to contrast marine and freshwater
temperate cold food webs. Low TMFs in freshwater food webs
were typically associated with cyclic methyl siloxanes,
polychlorinated dibenz-(p)-dioxins and -dibenzofurans
(PCDD/Fs), as well as PBDEs and other brominated flame
retardants. High TMFs in freshwater food webs were
dominated by a few PCBs (CBs 118, 138, and 153) and
organochlorine pesticide breakdown products (DDE and
oxychlordane). The largest TMFs in marine temperate food
webs were measured for a broad suite of PCBs along with
PBDEs (47 and 49), the latter of which had consistently low
TMFs in freshwater systems. The very low TMFs in marine
systems were dominated by PAHs, which are more easily
metabolized than other chemical classes for a given range of
KOWs.

17

Our findings suggest that metabolic biotransformation rate
(kM) may be even more important than hydrophobicity (KOW)
in driving biomagnification of OCs. For example, more rapidly
metabolized compounds (log10 kM > −2) such as Octa- and
Hepta-chlorinated PCDD/Fs17 had TMFs < 1 despite having
KOWs in the range where TMFs peak. Both BCF and BAF are
highly sensitive to kM, leading to ranges of several orders of
magnitude for a given KOW, particularly for larger compounds
(log10 KOW > 5)14,24). We observed the same effect for TMFs,
with considerable scatter in the TMF vs log KOW relationship
that was related to differences in kM. Of the 143 compounds
with mean TMF > 1, only two had kM > 0.2 d−1 (log10 kM >
−0.7), consistent with earlier thresholds above which
biomagnification does not occur in fish.14 These results
reinforce the importance of including kM in bioaccumulation
models,24 and highlight the potential application of kM in
screening-level risk assessments for new chemicals.6

Several sources of uncertainty could have contributed to
variation observed in our TMF models. Foremost is the
uncertainty related to estimates of kM and our application of kM
within our modeling framework. We used fish kM values derived
using kinetic mass balance models16,34 and normalized to a 10 g
fish at 15 °C (the approximate median values of data used to
parametrize the model). Uncertainty in the estimates associated
with method calculations vary by approximately 1−2 orders of
magnitude, which is on par with variation observed among fish
species and between routes of exposure (water vs diet).16 Here,
we extrapolated fish kM values to entire food webs comprised of

disparate organisms including endotherms, which have higher
metabolic transformation rates than fish. An underlying
assumption of our modeling framework is that these kM values
represent intrinsic properties of the chemicals themselves rather
than properties of a particular food web or of the varied
organisms comprising that food web. Our finding that kM was a
robust predictor of TMFs both at the global scale and among
different food web categories suggests that kM can be scaled
from species to ecosystems, similar to the requirement of
scaling kM values for consistent application of mass balance
bioaccumulation models.16 As with kM values, considerable
uncertainty is associated with accurately estimating KOW.
Reported values for a given OC may differ by several log
units,35 and KOW is particularly difficult to measure for very
hydrophobic compounds.23

Other sources of uncertainty are related to the methods used
to calculate the TMFs themselves. For example, dispropor-
tionate sampling of food webs affects the slope of the model
used to calculate TMFs, and many TMF studies are heavily
weighted to higher TLs (e.g., fish, birds, and mammals)
compared to lower-TL taxa.8 Another source of uncertainty
involves the use of a constant trophic enrichment factor (TEF,
usually 3.4‰) to calculate TL, a key determinant of TMF
(Supporting Information eqs 2−5, ref 11). Actual TEFs can
vary widely among consumers and food webs,19,36,37 and
violating the assumption of constant TEF can lead to over- or
under-estimation of TMFs.8,9,11,12,15 In addition, we focused on
relatively few broad categories of environmental and ecological
factors (marine vs freshwater, climate setting, and food web
type), but other ecosystem characteristics such as primary
productivity, physicochemical properties (e.g., dissolved organic
carbon concentration), spatial heterogeneity of contamination,
and animal movements potentially affect contaminant uptake
and accumulation in food webs).8,14,38−40 These variables were
not systematically reported among studies, limiting our ability
to assess their impact on TMFs. It is also possible that the
analysis presented herein suffered due to inherent biases related
to geography and the types of compounds studied. As an
example, very few studies on freshwater food webs were from
tropical or Arctic climates or on systems with endotherms, so
our models for the “freshwater” and “freshwater temperate
cold” groupings were virtually indistinguishable. Studies from
the southern hemisphere, tropical systems, and warm food
webs were also underrepresented. Finally, well-studied “legacy”
OCs such as PCBs and organochlorine pesticides dominated
the data set (accounting for a combined 1025 observations),
and more research is clearly needed on emerging contaminants
such as pharmaceuticals and personal care products. It is
understandable that legacy chemicals have received more
emphasis than other, newer OCs, and the numerical dominance
of legacy OCs in the analysis could potentially bias our
modeling results. However, it is important to note that the PCB
and organochlorine pesticide classes include myriad different
chemicals that span much of the observed range of log10 kM
(−3.58 to −0.37) and log10 KOW (2.7−8.4) used to model TMF
in our analysis. As a check on whether PCBs alone might be
unduly influencing our modeled relationships, we estimated the
global models for log10 kM, log10 KOW, and log10 kM + log10 KOW
eliminating all PCBs (new n = 822). Similar changes in TMF
distributional patterns were observed as when all compounds
were included, and estimated regression coefficients were
similar (results not shown).
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Given the above limitations and the experience of handling
>1500 TMF observations, we have some recommendations for
future TMFs studies. Because of uncertainties in food web
structure, the choice of a single organism to characterize the
baseline δ15N of ecosystems can lead to inaccurate TLs in
complex food webs where multiple energy pathways (e.g.,
benthic vs pelagic carbon) exist. To account for this possibility,
studies should include a benchmark chemical that consistently
exhibits biomagnification8,9 which would ensure that all
organisms are deriving the majority of their energy and the
contaminant of interest from a relatively linear food chain.
PCB-153 is a strong candidate for this purpose,22 as it had an
average TMF of 6.0 (n = 50) that ranged from 1.5 to 34.0 in
our database. These higher TMF values that were always >1
indicate that measured TMFs for other OCs should be viewed
with caution if PCB-153 has an unusually low TMF in that
particular food web. Other minor recommendations include
providing CAS numbers or IUPAC names of OCs to facilitate
searches of databases for chemical properties, providing more
physical and chemical characteristics of the system, and lipid-
normalizing data prior to TMF calculations. Most recent papers
adhere to this latter guideline, but there remain examples where
lipid normalization was deliberately avoided.41,42 Although we
did not exclude studies with a limited range in TLs, nor those
studies where log[contaminant] vs TL regressions were
nonsignificant, others have argued that, for a TMF to be
valid, it must be derived from a significant regression that
includes at least three TLs.8,9,43 These strict criteria would have
considerably reduced our database. Instead, we included all
studies that contained multiple species, regardless of the range
in TLs, and those studies with nonsignificant regressions. While
this led to the inclusion of many values of TMF near (and not
significantly different from 1), it allowed a fuller examination of
key drivers of trophic magnification of OCs.
Despite the relatively strong predictive ability of the

combination of KOW and kM, which holds promise for future
modeling31 and regulatory6 efforts, there were important
exceptions. For example, there were 210 OCs with log10 kM
<−2 (<0.01 day−1), of which 33 unexpectedly had TMFs <1.
While a handful of these were exceptionally large molecules
(e.g., medium-chain chlorinated paraffins)44 with extremely
high log KOW (>9) and were adequately predicted by our
combined KOW and kM model, others, such as the brominated
flame retardant BTBPE (better known as bis-tribromophenoxy
ethane) seem to defy explanation. This OC has a predicted kM
of 0.0002 day−1 (EPIsuite 4.1) suggesting slow transformation,
and a log10 KOW = 7.88, near the range where TMFs peak. Yet
TMFs measured for BTBPE were less than 1 in two
independent studies (SI Table S1). Thus, this compound
would be targeted for additional screening using our
probabilistic model but would likely be deemed a “false
positive” after further testing. Uncertainty in kM and KOW values
used in our model likely contribute to the discrepancy between
model prediction and field measurement of TMFs for BTBPE.
First, the extremely slow metabolic rate of 0.0002 day−1 would
be difficult to measure with precision using laboratory
experiments. Second, KOW for BTBPE has not been measured
experimentally, and predicted values differ substantially. The
published value (7.8845) we used in our analysis was estimated
using ACD/Laboratories Software V9.04, but the BCFBAF
function of EPIsuite estimates its log10 KOW at 9.18. If this latter
KOW estimate is more accurate, it would explain the low TMFs
for BTBPE observed in the two field studies (i.e., low

bioavailability limits trophic magnification) and would be in
much better agreement with our combined KOW and kM model.
The production and release of OCs is an ongoing issue of

global concern.4 Our findings indicate that the biomagnification
potential of current and future OCs can be robustly assessed
using the two widely available properties of chemical solubility
(KOW) and metabolic transformation rate (kM). This proba-
bilistic model can advance our ability to screen PBT chemicals
and predict those chemicals that could play an outsized role in
nudging the Earth beyond its boundary for chemical
pollution.3,5 However, it is important from a risk assessment
perspective to consider that biomagnification is context
dependent. That is, some ecosystems are more vulnerable
than others to biomagnification of chemicals. These include
freshwater ecosystems, where chemicals routinely biomagnify
(vast majority of TMFs > 1), albeit at relatively lower levels,
and marine ecosystems where endothermic predators such as
birds and mammals are strongly reliant on aquatic prey,
resulting in extraordinarily high TMFs.
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(7) van Wijk, D.; Cheńier, R.; Henry, T.; Hernando, M. D.; Schulte,
C. Integrated approach to PBT and POP prioritization and risk
assessment. Integr. Environ. Assess. Manage. 2009, 5, 697−711.
(8) Borga, K.; Kidd, K. A.; Muir, D. C. G.; Berglund, O.; Conder, J.
M.; Gobas, F. A. P. C.; Kucklick, J. R.; Malm, O.; Powell, D. E. Trophic
magnification factors: considerations of ecology, ecosystems, and study
design. Integr. Environ. Assess. Manage. 2012, 8, 64−84.
(9) Burkhard, L. P.; Borga, K.; Powell, D. E.; Leonards, P.; Muir, D.
C. G.; Parkerton, T. F.; Woodburn, K. B. Improving the quality and
scientific understanding of Trophic Magnification Factors (TMFs).
Environ. Sci. Technol. 2013, 47, 1186−1187.
(10) Gobas, F. A. P. C.; de Wolf, W.; Burkhard, L. P.; Verbruggen, E.;
Plotzke, K. Revisiting bioaccumulation criteria for POPs and PBT
assessments. Integr. Environ. Assess. Manage. 2009, 5, 624−637.
(11) Jardine, T. D.; Kidd, K. A.; Fisk, A. T. Applications,
considerations, and sources of uncertainty when using stable isotope
analysis in ecotoxicology. Environ. Sci. Technol. 2006, 40, 7501−7511.
(12) Lavoie, R. A.; Jardine, T. D.; Chumchal, M. M.; Kidd, K. A.;
Campbell, L. M. Biomagnification of mercury in aquatic food webs: a
worldwide meta-analysis. Environ. Sci. Technol. 2013, 47, 13385−
13394.
(13) Mackay, D.; Fraser, A. Bioaccumulation of persistent organic
chemicals: mechanisms and models. Environ. Pollut. 2000, 110, 375−
391.
(14) Arnot, J. A.; Gobas, F. A. P. C. A review of bioconcentration
factor (BCF) and bioaccumulation factor (BAF) assessments for
organic chemicals in aquatic organisms. Environ. Rev. 2006, 14, 257−
297.
(15) Walters, D. M.; Mills, M. A.; Cade, B. S.; Burkard, L. P. Trophic
magnification of PCBs and its relationship to the octanol-water
partition coefficient. Environ. Sci. Technol. 2011, 45, 3917−3924.
(16) Arnot, J. A.; Mackay, D.; Parkerton, T. F.; Bonnell, M. A
database of fish biotransformation rates for organic chemicals. Environ.
Toxicol. Chem. 2008, 27, 2263−2270.
(17) van der Oost, R.; Beyer, J.; Vermeulen, N. P. E. Fish
bioaccumulation and biomarkers in environmental risk assessment: a
review. Environ. Toxicol. Pharmacol. 2003, 13, 57−149.
(18) Houde, M.; et al. Influence of lake characteristics on the
biomagnification of persistent organic pollutants in lake trout food
webs. Environ. Toxicol. Chem. 2008, 27, 2169−2178.
(19) Fisk, A. T.; Hobson, K. A.; Norstrom, R. J. Influence of chemical
and biological factors on trophic transfer of persistent organic
pollutants in the Northwater Polynya marine food web. Environ. Sci.
Technol. 2001, 35, 732−738.
(20) Hop, H.; Borga, K.; Gabrielsen, G. W.; Kleivane, L.; Skaare, J. U.
Food web magnification of persistent organic pollutants in
poikilotherms and homeotherms from the Barents Sea. Environ. Sci.
Technol. 2002, 36, 2589−2597.
(21) Debruyn, A. M. H.; Gobas, F. A bioenergetic biomagnification
model for the animal kingdom. Environ. Sci. Technol. 2006, 40, 1581−
1587.
(22) Kelly, B. C.; Gobas, F.; McLachlan, M. S. Intestinal absorption
and biomagnification of organic contaminants in fish, wildlife, and
humans. Environ. Toxicol. Chem. 2004, 23, 2324−2336.
(23) Arnot, J. A.; Arnot, M. I.; Mackay, D.; Couillard, Y.; MacDonald,
D.; Bonnell, M.; Doyle, P. Molecular size cutoff criteria for screening
bioaccumulation potential: Fact or fiction? Integr. Environ. Assess.
Manage. 2010, 6, 210−224.
(24) Arnot, J. A.; Quinn, C. L. Development and evaluation of a
database of dietary bioaccumulation test data for organic chemicals in
fish. Environ. Sci. Technol. 2015, 49, 4783−4796.

(25) Hawker, D. W.; Connell, D. W. Octanol-water partition
coefficients of polychlorinated biphenyl congeners. Environ. Sci.
Technol. 1988, 22, 382−387.
(26) Cade, B. S.; Noon, B. R. A gentle introduction to quantile
regression for ecologists. Front. Ecol. Environ. 2003, 1, 412−420.
(27) Koenker, R. Quantile Regression; Cambridge University Press:
London, U.K., 2005.
(28) R Development Core Team. R: A Language and Environment for
Statistical Computing; R Foundation for Statistical Computing: Vienna,
Austria, 2008; http://www.R-project.org.
(29) Burnham, K. P.; Anderson, D. R. Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer:
New York, NY, 2002.
(30) Borga, K.; Fisk, A. T.; Hoekstra, P. F.; Muir, D. C. G. Biological
and chemical factors of importance in the bioaccumulation and trophic
transfer of persistent organochlorine contaminants in arctic marine
food webs. Environ. Toxicol. Chem. 2004, 23, 2367−2385.
(31) Arnot, J. A.; Gobas, F. A. P. C. A food web bioaccumulation
model for organic chemicals in aquatic ecosystems. Environ. Toxicol.
Chem. 2004, 23, 2343−2355.
(32) Fisk, A.; Norstrom, R. J.; Cymbalisty, C. D.; Muir, D. C. G.
Dietary accumulation and depuration of hydrophobic organochlorines:
Bioaccumulation parameters and their relationship with the octanol-
water partition coefficient. Environ. Toxicol. Chem. 1998, 17, 951−961.
(33) Kelly, B. C.; Ikonomou, M. G.; Blair, J. D.; Morin, A. E.; Gobas,
F. A. P. C. Food web-specific biomagnification of persistent organic
pollutants. Science 2007, 317, 236−239.
(34) Arnot, J. A.; Mackay, D.; Bonnell, M. Estimating metabolic
biotransformation rates in fish from laboratory data. Environ. Toxicol.
Chem. 2008, 27, 341−351.
(35) Stieger, G.; Scheringer, M.; Ng, C. A.; Hungerbuehler, K.
Assessing the persistence, bioaccumulation potential and toxicity of
brominated flame retardants: Data availability and quality for 36
alternative brominated flame retardants. Chemosphere 2014, 116, 118−
123.
(36) Post, D. M. Using stable isotopes to estimate trophic position:
Models, methods, and assumptions. Ecology 2002, 83, 703−718.
(37) Hussey, N. E.; MacNeil, M. A.; McMeans, B. C.; Olin, J. A.;
Dudley, S. F. J.; Cliff, G.; Wintner, S. P.; Fennessy, S. T.; Fisk, A. T.
Rescaling the trophic structure of marine food webs. Ecol. Lett. 2014,
17, 239−250.
(38) Lavoie, R. A.; Kyser, T. K.; Friesen, V. L.; Campbell, L. M.
Tracking overwintering areas of fish-eating birds to identify mercury
exposure. Environ. Sci. Technol. 2015, 49, 863−872.
(39) McLeod, A. M.; Arnot, J. A.; Borga, K.; Selck, H.; Kashian, D.
R.; Krause, A.; Paterson, G.; Haffner, G. D.; Drouillard, K. G.
Quantifying uncertainty in the trophic magnification factor related to
spatial movements of organisms in a food web. Integr. Environ. Assess.
Manage. 2015, 11, 306−318.
(40) Kim, J.; Gobas, F. A.; Arnot, J. A.; Powell, D. E.; Seston, R. M.;
Woodburn, K. B. Evaluating the roles of biotransformation, spatial
concentration differences, organism home range, and field sampling
design on trophic magnification factors. Sci. Total Environ. 2016, 551,
438−451.
(41) Hebert, C. E.; Keenleyside, K. A. To normalize or not to
normalize? Fat is the question. Environ. Toxicol. Chem. 1995, 14, 801−
807.
(42) McIntyre, J. K.; Beauchamp, D. A. Age and trophic position
dominate bioaccumulation of mercury and organochlorines in the food
web of Lake Washington. Sci. Total Environ. 2007, 372, 571−584.
(43) Conder, J. M.; Gobas, F. A. P. C.; Borga, K.; Muir, D. C. G.;
Powell, D. E. Use of trophic magnification factors and related measures
to characterize bioaccumulation potential of chemicals. Integr. Environ.
Assess. Manage. 2012, 8, 85−97.
(44) Houde, M.; Muir, D. C. G.; Tomy, G. T.; Whittle, D. M.;
Teixeira, C.; Moore, S. Bioaccumulation and trophic magnification of
short- and medium-chain chlorinated paraffins in food webs from Lake
Ontario and Lake Michigan. Environ. Sci. Technol. 2008, 42, 3893−
3899.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b00201
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

H

http://www.R-project.org
http://dx.doi.org/10.1021/acs.est.6b00201


(45) de Wit, C. A.; Kierkegaard, A.; Ricklund, N.; Sellström, U.
Emerging Brominated Flame Retardants in the Environment. In
Handbook of Environmental Chemistry, Eljarrat, E., Barcelo,́ D., Eds.;
Springer: Berlin, 2011; p 241−286.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b00201
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

I

http://dx.doi.org/10.1021/acs.est.6b00201

