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Abstract

Northern ecosystems are experiencing some of the most dramatic impacts of global

change on Earth. Rising temperatures, hydrological intensification, changes in atmo-

spheric acid deposition and associated acidification recovery, and changes in vegeta-

tive cover are resulting in fundamental changes in terrestrial–aquatic biogeochemical

linkages. The effects of global change are readily observed in alterations in the sup-

ply of dissolved organic matter (DOM)—the messenger between terrestrial and lake

ecosystems—with potentially profound effects on the structure and function of

lakes. Northern terrestrial ecosystems contain substantial stores of organic matter

and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to

surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ulti-

mately shifting its composition, stoichiometry, and bioavailability. Here, we explore

the potential consequences of these global change-driven effects for lake food webs

at northern latitudes. Notably, we provide evidence that increased allochthonous

DOM supply to lakes is overwhelming increased autochthonous DOM supply that

potentially results from earlier ice-out and a longer growing season. Furthermore,

we assess the potential implications of this shift for the nutritional quality of auto-

trophs in terms of their stoichiometry, fatty acid composition, toxin production, and
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methylmercury concentration, and therefore, contaminant transfer through the food

web. We conclude that global change in northern regions leads not only to reduced

primary productivity but also to nutritionally poorer lake food webs, with discernible

consequences for the trophic web to fish and humans.
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1 | INTRODUCTION

Northern ecosystems (>45°N latitude) are expected to experience

the highest rates of change in any category of ecosystems on the

planet (Hansen et al., 2006; Kirtman et al., 2013). Higher tempera-

tures, an intensification of hydrology (i.e., wet areas become wetter,

dry areas become drier), and increased frequency and magnitude of

extreme events (e.g., floods and droughts) are having significant

effects on these ecosystems. While the ways in which underlying

ecological processes are responding to climate change are hard to

gauge, lakes integrate many of these effects and may, therefore,

serve as sentinels of change—integrating atmospheric, terrestrial, and

aquatic processes (Williamson, Dodds, Kratz, & Palmer, 2008; Wil-

liamson et al., 2016).

Climate change is altering the relationship between northern ter-

restrial and aquatic ecosystems in complex ways—with dissolved

organic matter (DOM) potentially serving as a signaling catalyst of

changes in upstream and downstream processes that influence lake

food webs (Figure 1). DOM refers to soluble and colloidal organic

material arbitrarily defined by the pore size of the filter it is passing

through [ranging between 0.2 and 0.7 lm, but most commonly

0.45 lm (Xu & Guo, 2017)]. DOM represents a rich diversity of

organic materials produced by living organisms rivaled only by the

diversity of organic molecules that result from the degradation of

these organisms (Koch & Dittmar, 2006). DOM in lakes may origi-

nate from the surrounding catchment (allochthonous) or be produced

within the lake (autochthonous). While the primary component of

DOM is carbon (C), it also contains macronutrients such as nitrogen

(N) and phosphorus (P), micronutrients such as iron (Fe), as well as

toxins and contaminants such as mercury (Hg) (Ged & Boyer, 2013;

Maranger & Pullin, 2003; Qualls & Richardson, 2003; Ravichandran,

2004). As DOM is transported in percolating and running waters, cli-

matic and environmental factors operating within watersheds influ-

ence its compositional diversity (Battin et al., 2008; Hedin, Armesto,

& Johnson, 1995; Manzoni & Porporato, 2011).

There is a strong relationship between the lateral export of

organic material from northern forests and the organic matter con-

tent in lakes (Gergel, Turner, & Kratz, 1999; Rasmussen, Godbout, &

Schallenberg, 1989), which reflects the large proportion of land rela-

tive to often-small inland waters. In fact, terrestrial (allochthonous)

DOM is considered to be the major fraction of total aquatic DOM in

northern lakes (Berggren, Ziegler, St-Gelais, Beisner, & Del Giorgio,

2014; Karlsson et al., 2012; Wilkinson, Pace, & Cole, 2013). Both

increased temperature (Weyhenmeyer & Karlsson, 2009) and precipi-

tation-driven runoff (de Wit et al., 2016; Tranvik & Jansson, 2002),

together with changes in atmospheric acid deposition (Evans et al.,

2012; SanClements, Oelsner, McKnight, Stoddard, & Nelson, 2012),

land use, and land cover (Finstad et al., 2016; Kritzberg, 2017;

Meyer-Jacob, Tolu, Bigler, Yang, & Bindler, 2015), are likely to lead

to fundamental changes in terrestrial ecosystems. The interplay

between these changing factors is altering the properties of DOM in

lakes. For example, the rates of terrestrial production and decompo-

sition, which determine the potential flux of organic C and nutrients

to recipient lakes, are increasing (Hessen, Andersen, Larsen,

Skjelkv�ale, & de Wit, 2009). The combined effects of changes in the

C pool, together with distinct environmental modulators operating

on this C pool, are affecting terrestrial–aquatic DOM linkages in

three ways: the amount and composition of DOM that reaches

freshwaters from land; the timing of these DOM fluxes; and how

DOM is processed in rivers and lakes. The responses of lakes to

these escalating changes may alter ecosystem structure and function,

potentially presenting a risk for people who rely on northern lakes

for ecosystem services (Chapin et al., 2004).

Herein, we present a synthesis of the expected effects of climate

change on DOM. The effects of changing DOM concentrations on

food web carbon subsidies have been extensively studied and

debated (e.g., Solomon et al., 2015), often without arriving at firm

conclusions. Other consequences of changing DOM, particularly

related to other aspects such as the stoichiometry of DOM (and the

stoichiometric impact on the biota) have been less explored and

require further consideration. These aspects may also explain some

of the contrasting findings regarding the effects of DOM on aquatic

ecosystems. First, we summarize how changes in climate affect the

timing, magnitude, and composition of DOM delivered to lakes ben-

efiting from recent reviews on the topic (e.g., Filella & Rodr�ıguez-

Murillo, 2014; Hanson, Pace, Carpenter, Cole, & Stanley, 2015;

Pagano, Bida, & Kenny, 2014; Porcal, Koprivnjak, Molot, & Dillon,

2009; Solomon et al., 2015). Second, we build on this summary by

considering possible consequences of these changes in DOM for

lake productivity and food web structure. Third, we assess the

impact of changing DOM on whole-lake production and the “nutri-

tional value” of this production (i.e., essential fatty acids [EFAs], tox-

ins, and contaminants). We pose the following questions: (1) How is

the distribution of DOM concentration and composition in northern
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lakes affected by changes in climate? and (2) Given changes in DOM

concentration and composition, what are the potential consequences

for food web functioning? To address these questions, we present

several compelling hypotheses, synthesize the current evidence, and

advance key knowledge gaps that we view as future research priori-

ties. The insights gathered build a holistic view of the realized and

prospective ecological outcomes of changing DOM.

2 | GREATER INPUTS OF DOM TO LAKES

We hypothesize that browning of northern lakes is a product of cli-

mate warming, hydrological intensification, terrestrial primary pro-

duction, and a decline in atmospheric acid deposition, reflecting an

increase in the concentration, and a decrease in the biolability of

DOM exported to northern lakes (Figure 2).

Many lakes in the boreal regions of northern Europe and north-

eastern North America are undergoing a “browning” due to rising

concentrations of allochthonous DOM (Monteith et al., 2007; Solo-

mon et al., 2015) and associated Fe (Bj€orner�as et al., 2017; Kritzberg

& Ekstr€om, 2012). The link between increased DOM and Fe has

been found in many regions throughout northern Europe and North

America (e.g., Bj€orner�as et al., 2017). Exceptions to lakes undergoing

browning include alpine lakes surrounded by talus, northern lakes in

watersheds with little terrestrial vegetation (e.g., Preston et al.,

2016), and northern lakes experiencing long-term drought (Schindler

et al., 1997; Williamson et al., 2016).

The term browning refers to a change in the optical properties

of lake water with a shift toward a brown color. This change is

caused by an increased presence of humic matter of terrestrial and

wetland origin, which absorbs strongly the shorter wavelengths of

the visible spectrum of solar radiation (Gran�eli, 2012; Jones, 1992).

The tight coupling between DOM and Fe (which also contributes to

the change in the chromophoric properties of DOM, creating an

even browner color) is explained in part by: (1) the Fe redox chem-

istry, since reductive dissolution of iron(oxy)hydroxides can cause a

release of associated DOM in soil pore water (Knorr, 2013); and (2)

the interactions of DOM with Fe that can prevent its precipitation

and sedimentation (Shapiro, 1966; Tipping, 1981). These two pro-

cesses facilitate the cotransport, via runoff, of DOM and Fe from

organic soils into lakes. DOM of different origins varies in Fe-binding

capacity (Shapiro, 1964); for instance, wetland-derived DOM has a

relatively high Fe-binding capacity (Xiao, Sara-Aho, Hartikainen, &

V€ah€atalo, 2013). Therefore, northern lakes which have a relatively

F IGURE 1 Lake food webs represented by the transfer of energy
and matter from autotrophic (green) and heterotrophic (brown)
sources in the pelagic and benthic environments. The lake dissolved
organic matter (DOM) pool is contributed by both terrestrial
allochthonous inputs and autochthonous phytoplankton and is used
by pelagic and benthic heterotrophic bacteria

F IGURE 2 Hypothesized effects of global changes on properties
of dissolved organic matter (DOM) loads to northern lakes. Previous
scientific literature (e.g., 1Freeman, Evans, Monteith, Reynolds, &
Fenner, 2001; 2Larsen et al., 2011; 3Laudon et al., 2012; 4Mattsson
et al., 2015; 5Monteith et al., 2007; 6Ekstr€om et al., 2011; 7Jansson
et al., 2008; 8Jeganathan et al., 2014; 9McKenney et al., 2014;
10Sittaro et al., 2017; 11Hansen et al., 2013; 12Kritzberg, 2017) has
established that global change is leading to an increase in the
concentration of allochthonous DOM to many northern lakes.
However, the global change effects on the composition of
allochthonous DOM are unknown. We hypothesize that global
change is leading to DOM that is on average more humic-like,
aromatic, and with larger molecules entering lakes. Once DOM
enters the lakes, in-lake processes further modify DOM molecular
structure (e.g., bacterial and photodegradation of humic compounds).
The hypothesized effects show the influence of individual global
change drivers on DOM loads; the interactive effects of these global
change drivers (e.g., a shift to a warmer and drier climate) are
important but not shown
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high proportion of wetlands in their contributing catchments are

more vulnerable to browning due to high-DOM–Fe loading

potentials.

Several factors drive the browning of surface waters (Figure 2):

warming and hydrological shifts due to climate change (Erlandsson

et al., 2008; Roulet & Moore, 2006; Sarkkola et al., 2009); reduced

atmospheric acid deposition (Clark et al., 2010; Evans, Chapman,

Clark, Monteith, & Cresser, 2006; Monteith et al., 2007); a change in

the composition of DOM that alters degradation rates (either

biodegradation rates or photodegradation rates) (Cory, Ward, Crump,

& Kling, 2014); and the “greening” of the northern hemisphere (Fin-

stad et al., 2016). A combination of these factors is the most likely

explanation for browning, but interactive effects are complex. Most

drivers are changing in a direction that is resulting in further surface

water browning, but uncertainties remain. One such uncertainty is

the effect of climate change-driven alterations in temperature on

loads of allochthonous DOM to surface waters. According to recent

studies, the thawing of permafrost and lengthening of growing sea-

son in vast areas in the north (Barichivich et al., 2013; Buitenwerf,

Rose, & Higgins, 2015) may result in either increases in allochtho-

nous DOM inputs to headwater streams (Spencer et al., 2015) and

rivers (Holmes et al., 2008), or decreases in allochthonous DOM

export through a deepening of hydrological flow paths (Harms et al.,

2016; Walvoord & Striegl, 2007). These contrasting results suggest

significant uncertainties related to permafrost degradation and

upland hydrology in predicting future DOM export to northern sur-

face waters (Abbott et al., 2016).

Climate change-driven alterations in thermal and hydrological

regimes (Andr�easson, Bergstr€om, Carlsson, Graham, & Lindstr€om,

2004; Korhonen & Kuusisto, 2010) are affecting DOM loads (e.g.,

Laudon et al., 2012; Mattsson, Kortelainen, R€aike, Lepist€o, & Tho-

mas, 2015; Schiff et al., 1998). First, an important direct influence of

climate change on northern lakes is the progressively longer ice-free

period, with ice-on occurring on average 5.8 � 1.9 days per century

later and ice-out occurring on average 6.5 � 1.4 days per century

earlier (Magnuson et al., 2000). However, while the increase in the

duration of the ice-free period may be expected to enhance primary

production (Hampton et al., 2017; Smol et al., 2005), the proportion

of autochthonous DOM produced by in situ primary production is

relatively small (Miller, McKnight, Chapra, & Williams, 2009). Second,

a change in precipitation amounts may influence concentration and

composition of DOM in lakes. Increasing precipitation and associated

shorter hydrological residence times may translate into a larger pro-

portion of DOM to be derived from allochthonous sources (Algesten

et al., 2004; Hansson et al., 2013), if the rate of allochthonous DOM

loading exceeds the rate of autochthonous DOM production (Kotha-

wala et al., 2014). In contrast, decreasing precipitation and associ-

ated longer water residence times are allowing for a larger

proportion of allochthonous DOM to be lost from the lake water

column by mineralization, flocculation, or sedimentation. Third, a

change in the timing of precipitation events may influence in-lake

uptake and processing of DOM. Spring melt and autumn storms that

flush DOM from forests are important in providing fresh supplies of

allochthonous DOM to lakes. Bacteria preferentially remove amino

acids and carbohydrates from this fresh supply of allochthonous

DOM (e.g., Berggren, Laudon, Haei, Str€om, & Jansson, 2010).

Changes in atmospheric pollution that are evident today—specif-

ically, a reduction in the atmospheric deposition of sulfur and, to

some extent, the associated recovery from acidification—are increas-

ing allochthonous inputs of DOM to the majority of surface waters

(Ekstr€om et al., 2011; Hagedorn, Schleppi, Waldner, & Fluhler, 2000;

Monteith et al., 2007). A return to higher pH results in higher net

charge of organic molecules and higher polarity (Ekstr€om et al.,

2011). Therefore, reduced soil acidity leads to a decrease in the

adsorption capacity of the soil, increased DOM solubility, and higher

export of terrestrial DOM (Jardine, McCarthy, & Weber, 1989). The

mobilized DOM has high molecular weight and a high sensitivity to

ultraviolet (UV) light and photoreactive damage (Lu, Yuan, Tao, &

Tang, 2015; SanClements et al., 2012; Timko, Gonsior, & Cooper,

2015). Due to these properties, the mobilized DOM may be less

available to bacterial uptake (Figure 2) (Ekstr€om et al., 2016).

Changes caused by a greening of the northern hemisphere result

in increased DOM export (Finstad et al., 2016; Larsen, Andersen, &

Hessen, 2011), possibly with different composition (Boisvert-Marsh,

Perie, & de Blois, 2014). Increased temperature is leading to higher

rates of terrestrial net primary production (Jansson, Hickler, Jonsson,

& Karlsson, 2008) and ecosystem respiration over a longer growing

season (Jeganathan, Dash, & Atkinson, 2014) leading to greater accu-

mulation of organic matter to be exported as DOM to lakes. These

changes in the rate and duration of terrestrial primary production (cf.

Barichivich et al., 2013) may be coupled with changes in land cover

including a shift in tree species. Some suggest that the boundary

between the boreal (coniferous) and temperate (deciduous) forests is

shifting northward (McKenney et al., 2014), which is resulting in the

accumulation and export of DOM of different composition (Boisvert-

Marsh et al., 2014). However, others suggest that the rate of north-

ward expansion of tree species is not keeping pace with the rate of

increase in air temperature at the northerly limits of the tree species’

ranges (Sittaro, Paquette, Messier, & Nock, 2017), which may result

in forest decline as tree species experience suboptimal conditions.

Furthermore, changes in land use because of deforestation or

afforestation in the northern hemisphere (Hansen et al., 2013) are

leading to changes in the production of terrestrial organic matter,

accumulation of organic matter in the landscape, and ultimately

export of DOM into lakes (Kritzberg, 2017). While brownification

has already been observed in northern lakes, there are responses

that may take long timescales to become evident. For example,

effects of changes in forest primary production occur over annual

timescales, effects of recovery from acidification occur over decadal

timescales, and effects of afforestation occur over longer timescales.

3 | CHANGING ROLE OF DOM IN LAKES

We hypothesize that changed allochthonous DOM is leading to fun-

damental transformations at the base of the food web by modifying
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the physical and chemical properties of the water such as light, tem-

perature, and nutrients. These changes are, in turn, impacting pro-

ductivity and community composition (Figure 3).

Increases in allochthonous DOM loads to lakes are having a

strong effect on internal lake processes. Climate change is warming

lake surface waters globally, with many northern lakes warming sig-

nificantly faster than the global average (O’Reilly et al., 2015).

Although increased air temperature is the primary driver of this

change, factors such as lake depth, clarity, and mixing regime are

also playing an important role in determining whole-lake temperature

response (Kraemer et al., 2015; Rose, Winslow, Read, & Hansen,

2016). DOM affects lake warming trends by influencing light attenu-

ation. DOM attenuates light by absorbing photosynthetically active

radiation (PAR), and the absorption of PAR creates a positive feed-

back by initiating a biogeochemical cycle that results in further

warming of the surface waters of lakes (Porcal et al., 2009; Solomon

et al., 2015), and preventing a larger fraction of the deeper waters

of lakes to warm up. As a consequence, DOM-rich lakes have a shal-

lower and more stable thermocline, which restricts the photic zone

and reduces the mixing of nutrients from deeper layers (Houser,

2006). However, browning of lakes is leading to overall cooler than

expected water temperature as the volume of the hypolimnion

increases (Read & Rose, 2013; Williamson et al., 2015). DOM also

attenuates UV and therefore protects organisms from harmful UV

radiation (Schindler et al., 1997; Williamson, Stemberger, Morris,

Frost, & Paulsen, 1996; Williamson et al., 2016). Consequently,

DOM is a key determinant of lake productivity in northern lakes

(Karlsson et al., 2009; Thrane, Hessen, & Andersen, 2014).

Dissolved organic matter absorption of light results in photolysis,

promoting a suite of photochemical processes that partially or com-

pletely oxidize complex organic molecules into smaller units (Ber-

tilsson & Tranvik, 2000). Sustained photolysis of DOM leads to

photomineralization (notably converting some dissolved organic C

into dissolved inorganic C), coupled with a loss of photolabile aro-

matic molecules and a gain of photo-resistant aliphatic molecules

(Moran & Zepp, 1997; Vinebrooke & Leavitt, 1998; Wetzel, Hatcher,

& Bianchi, 1995). Some studies suggest that up to 10% of the miner-

alization of DOM in lakes happens through photodegradation (Cory

et al., 2014; Koehler, Landelius, Weyhenmeyer, Machida, & Trankvik,

2014). A consequence of photolysis is a loss of the light-absorption

properties of the photo-bleached DOM (Del Vecchio & Blough,

2002; Helms et al., 2014; Moran, Sheldon, & Zepp, 2000) and an

increase in the biolability of the carbon molecules resulting from

photodegradation (Lindell, Gran�eli, & Tranvik, 1995).

The products of DOM photolysis have different fates and

impacts. Many photoproducts of DOM are benign. Some photoprod-

ucts of DOM have beneficial effects on microbial communities by

providing a source of small organic molecules that may support the

metabolism of bacteria and primary producers. However, other pho-

toproducts of DOM have harmful effects on microbial communities

by serving as a source of potentially harmful transient byproducts

such as reactive oxygen species (i.e., hydrogen peroxide [H2O2] and

superoxide [O2
�]) (Hudson, Dillon, & Somers, 2003; Wolf, Andersen,

Hessen, & Hylland, 2017). DOM may also serve as a sink or scav-

enger for some reactive oxygen species (e.g., hydroxyl and singlet

oxygen radicals) (Vione et al., 2006). Therefore, the relationship

F IGURE 3 Main effects of terrestrial dissolved organic matter
(DOM) loading on the chemical, physical, and biological
characteristics of DOM into and within a lake. Effects driven by
DOM concentration are in brown, with the effects of higher
concentrations increasing to the right. Effects driven by DOM
composition are in green, with the effects of more refractory
composition increasing to the right. The thickness of the shapes
represents the magnitude of change. Footnotes reflect published
scientific support for the depicted trend: 1Karlsson et al. (2009),
2Williamson et al. (1996), 3Houser (2006), 4Ekstr€om et al. (2011),
5Lydersen, Larssen, and Fjeld (2004), 6Solomon et al. (2015), 7Kelly
et al. (2014), 8Berggren et al. (2015), 9Seekell, Lapierre, Ask, et al.
(2015), 10Taipale et al. (2016), 11Sorichetti et al. (2014), 12Watras
et al. (1998)
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between DOM, light, and reactive oxygen species is complex (Page,

Logan, Cory, & McNeill, 2014). Certain organisms may benefit from

the harmful effects of UV exposure or reactive oxygen species if

their predators, parasites, or competitors have a higher vulnerability

to these stressors (H€ader et al., 2015; Imlay, 2003). For example, in

the surface waters of DOM-rich lakes, the conversion of light energy

into heat in oxygenated waters results in the formation of harmful

reactive oxygen species that are known disinfecting agents (Lv et al.,

2016). Cyanobacteria that aggregate and accumulate in assemblages

or mats near the surface may have an advantage over other auto-

trophs in their ability to neutralize reactive oxygen species through

superoxide dismutase and other enzymes (Latifi, Ruiz, & Zhang,

2009; Ross, Santiago-V�azquez, & Paul, 2006). Yet, the photoproducts

of DOM generally have a negative impact, particularly on hetero-

trophic bacteria, viruses, and small phytoplankton (H€ader et al.,

2015; Kieber, Peake, & Scully, 2003; Yuan, Yin, Harrison, & Zhang,

2011).

Dissolved organic matter and its photo-oxidized products interact

with ionic compounds to modulate the pH and oxidative state of a

system. These factors may provide microbes with alternative elec-

tron donors or acceptors and regulate the overall metabolic potential

or metabolic stress affecting both planktonic and benthic species.

DOM also influences the chemical matrix of aqueous systems. For

example, DOM serves as a carrier and regulator of nutrients and

keeps these elements in solution and available for use by plankton in

the water column (Jones, 1998). An increase in the concentration of

DOM increases the concentration of nutrients in the water column

(Findlay, 2003), but the photolability and composition of DOM has

an important influence on the bioavailability of these nutrients (Fig-

ure 4). For example, allochthonous DOM that is more photolabile

and aromatic will have enhanced bioavailability following exposure

to light (Tranvik & Bertilsson, 2001). In contrast, autochthonous

DOM becomes more biorefractory and less bioavailable following

exposure to light (Miller, McKnight, & Chapra, 2009; Moran &

Covert, 2003). How, and in what direction, the complexation proper-

ties of DOM itself and its linkages to other elements are changing

under climate change is unknown, as are the consequences of these

changes for lake ecosystem structure and functioning (Berggren,

Sponseller, Soares, & Bergstr€om, 2015).

To fully reveal the complexity of these effects—including syner-

gistic and antagonistic interactions—in ecosystems with varying con-

centrations and compositions of DOM is beyond the reach of most

studies. Hence, from an ecological point of view, it may be more

fruitful to consider the net effects of these processes on the basis of

lake production and lake food webs, which are primary foci of this

paper.

4 | LOWER FOOD QUANTITY

The potential outcome of increased terrestrial DOM subsidies on

lake food webs is being determined by trade-offs between increased

nutrient availability that raises autotrophic biomass and decreased

light that lowers it. With increased browning, the balance will trend

toward decreased light availability, which is driving a shift from auto-

trophic-based to heterotrophic-based basal production, with a subse-

quent decline in energy transfer efficiency and a reduction in

biomass of higher trophic levels. We hypothesize that the net out-

come is that the food web is becoming increasingly reliant on terres-

trial DOM subsidies, which is further constraining the transfer of

energy up the food web (Figure 5).

Browning of lakes is expected to cause substantial changes in

the productivity of lake ecosystems (Finstad, Helland, Ugedal,

Hesthagen, & Hessen, 2014; Karlsson et al., 2009; Solomon et al.,

2015). Fish populations in lakes with low allochthonous inputs of

DOM are largely supported by benthic algae (Hecky & Hesslein,

F IGURE 4 Relationship between the bulk concentration of
dissolved organic matter (DOM) and the concentration of
bioavailable DOM (modified from Findlay, 2003)

F IGURE 5 Hypothesized relationship between dissolved organic
matter (DOM) concentration at the base of the food web,
representing the main food source for consumers at the extremes of
the x-axis (higher autotrophy at low-DOM and high-light conditions,
and higher heterotrophy at high-DOM and low-light conditions) and
biomass production at the top of the food web on the y-axis
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1995; Karlsson & Bystr€om, 2005). On the other hand, fish popula-

tions in lakes with higher allochthonous DOM inputs, especially

those that are hydrologically connected to catchments with large C

stocks, are to a larger degree supported by both (in variable propor-

tion) bacterial and pelagic algal production (Karlsson et al., 2012;

Solomon et al., 2011). Browning of lakes is leading to changes in

basal production that propagate through food webs in lakes, includ-

ing a shift from food webs dominated by autotrophs to food webs

dominated by heterotrophic bacteria, and a shift from benthic to lar-

gely pelagic-driven productivity (Ask et al., 2009; Karlsson et al.,

2009; Kissman, Williamson, Rose, & Saros, 2017).

Browning of lakes represents an energy input to aquatic ecosys-

tems, yet the ecological trajectory and consequences of this input

are not well understood. Allochthonous DOM stimulates bacterial

production (Hessen, Andersen, & Lyche, 1990) and can be directly

consumed by secondary consumers such as zooplankton (Cole et al.,

2011). However, it unclear if this consumption leads to reproduction

and growth (Faithfull, Huss, Vrede, & Bergstr€om, 2011; Wenzel,

Bergstr€om, Jansson, & Vrede, 2012). Allochthonous DOM may also

serve as a nutrient vector as it can supply micronutrients and

macronutrients necessary for phytoplankton growth, increasing pri-

mary production and favoring the transfer of autochthonous C into

the food web (Tanentzap et al., 2014). However, it also serves as a

light absorber, limiting primary production in lakes (Karlsson et al.,

2009). Therefore, a modest input of DOM into clear, nutrient-poor

systems may initially boost primary production because of the nutri-

ent inputs associated with the DOM (Seekell, Lapierre, Ask, et al.,

2015; Thrane et al., 2014), but this nutrient subsidy is eventually

overridden by the increased light attenuation of DOM (i.e., at dis-

solved organic C concentrations above 5 mg C L�1) (Finstad et al.,

2014; Seekell, Lapierre, & Karlsson, 2015; Thrane et al., 2014).

Browning of lakes may lead to regime shifts from clear-water,

autotrophic, benthic-dominated systems to brown-water, hetero-

trophic, pelagic-dominated systems. These shifts are driven by the

dual effect of allochthonous DOM in promoting heterotrophs as an

energy source at the base of the food web and suppressing auto-

trophs via light extinction and intensified nutrient competition (Ask

et al., 2009; Hessen et al., 1990). The switch from algal to bacterial

dominance is expected to reduce energy transfer efficiency through

food webs due to increases in the complexity of the lower levels of

the food web (Hessen, 1998). The effects of browning is particularly

pronounced for food webs where allochthonous DOM suppresses

otherwise dominant benthic primary production (Craig, Jones, Wei-

del, & Solomon, 2015; Karlsson et al., 2009; Premke et al., 2010).

A rise in allochthonous DOM may have other indirect negative

effects on lakes by promoting deep-water anoxia, more- dy-like sedi-

ments (i.e., the fluffy sedimented humic matter that provides a poor

substrate for benthic plants or animals) and by reducing consumers’

habitat availability as well as their ability to see prey in pelagic areas

(Brothers et al., 2014; Craig et al., 2015; Karlsson et al., 2015;

Stasko, Gunn, & Johnston, 2012). In general, except for clear and

shallow lakes with high light availability, a rise in allochthonous

DOM is expected to create conditions resulting in lower production

and higher dependence on terrestrial resources by organisms at

higher trophic levels (Craig et al., 2015; Jones, Solomon, & Weidel,

2012; Karlsson et al., 2009, 2015; Kelly, Solomon, Weidel, & Jones,

2014).

5 | CHANGES IN STOICHIOMETRY AFFECT
FOOD QUALITY

As terrestrial subsidies of DOM increase, we hypothesize that

reduced light availability is constraining biomass and primary produc-

tion of phytoplankton. However, due to the plastic stoichiometry of

phytoplankton that allows them to store nutrients supplied by DOM,

the remaining phytoplankton biomass is having higher nutrient con-

tent (i.e., lower C:N and C:P ratios) (Figure 6). In contrast, hetero-

trophic bacteria is increasing in biomass but is unaffected in both C:

N and C:P ratios due to their less plastic stoichiometry. This stoichio-

metrically modified food quality is propagating up the pelagic food

web via zooplankton to fish (Figure 6).

Increased terrestrial subsidies of DOM to lakes are accompanied

by changes in DOM stoichiometry in lakes (Estiarte & Pe~nuelas,

2015; Hessen, Agren, Anderson, Elser, & De Ruiter, 2004; Mattsson,

Kortelainen, & R€aike, 2005; Norby et al., 2005). Stoichiometric

changes occur in DOM as it flows from headwaters downstream to

lakes, rivers, and ultimately oceans (Creed et al., 2015). However,

the complex interactions and feedbacks that occur as DOM flows

F IGURE 6 Hypothesized relationship between increasing
concentration of dissolved organic matter (DOM) and the
stoichiometric properties of allochthonous particulate (dead) organic
matter (POM), phytoplankton, and bacteria. Since browning is
characterized by an increase in allochthonous organic matter with
greater proportions of refractory compounds, an increase in the C to
nutrient ratios of the particulate fraction (i.e., POM) can be expected
due to the higher C content in humic acids (e.g., Allard, 2006).
Different C:P and C:N ratios are promoting dominance of particular
microbial communities, with the concentration of DOM influencing
the biomass of the dominating community. Changes in the quality of
allochthonous POM depend on the DOM source and
transformations and are, therefore, dependent on the individual
characteristics of the catchment
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through landscapes make it a challenge to predict compositional

changes in the DOM input to lakes (Mattsson et al., 2015). Given

the strong focus of previous studies and syntheses on DOM and C,

it is timely to draw the attention toward other elements tightly

linked to DOM (Hessen et al., 2009).

The browning of lakes is expected to change the total concentra-

tion and bioavailability of elements, including macronutrients (C, N,

P), as well as micronutrients (e.g., Fe), and how they cycle in fresh-

waters (Jones & Lennon, 2015; Solomon et al., 2015). Research on

the effects of stoichiometry on basal primary and secondary produc-

ers (i.e., phytoplankton and bacteria) considers total bioavailable

pools of N and P to be their inorganic fractions (Berggren et al.,

2015; Jansson, Berggren, Laudon, & Jonsson, 2012; Soares et al.,

2017). Yet there is an extensive, but poorly accounted for, range in

the degree to which dissolved organic nutrients can be used by

microorganisms. In fact, the organic N and particularly organic P con-

tents of DOM seem to be much more bioavailable than its organic C

content (Berggren et al., 2015). This suggests that the stoichiometry

of the in-lake bulk nutrient pool may systematically over-represent

the actual supply ratios of C:N:P to bacteria, and likely to phyto-

plankton (Berggren et al., 2015).

The influence of DOM stoichiometry on primary production

must also be considered in the context of micronutrients, such as

Fe. Fe availability may constrain phytoplankton growth in olig-

otrophic, clear-water lakes (Vrede & Tranvik, 2006), and is an

important element for cyanobacteria (given its role in the nitroge-

nase enzyme) either in its inorganic forms (Hyenstrand, Rydin, &

Gunnerhed, 1999), or as part of DOM complexes (Sorichetti, Creed,

& Trick, 2014, 2016). Fe bioavailability may offset the negative

effects of Fe on light attenuation for phytoplankton growth (Thrane

et al., 2014). Therefore, DOM-induced changes in phytoplankton

structure and function may be considerable, not only through

changes in light availability (Jones, 1998) but also through changes

in access to limiting elements such as N, P, and Fe (Elser et al.,

2009; Hessen et al., 2009; Molot et al., 2014; Vrede & Tranvik,

2006). Furthermore, the N:P stoichiometry requirements in phyto-

plankton are affected by light availability, implying that browning

influences not only the available nutrient pool but also the required

pool; that is, that are necessary for phytoplankton growth (Thrane,

Hessen, & Andersen, 2016).

Changes in DOM stoichiometry are changing the relative avail-

ability of nutrients per available light unit, in turn affecting nutrient

cycling and primary and secondary production (Hessen, 2013; Ster-

ner, Elser, Fee, Guildford, & Chrzanowski, 1997). In phytoplankton-

dominated pelagic food webs, the expectation is that phytoplankton

will have a higher C to nutrient ratio in low-DOM lakes (high light:

low nutrient) compared to high-DOM lakes (low light: high nutrient)

(cf. Sterner et al., 1997). In contrast, heterotrophic bacteria will have

a higher P content than phytoplankton (Vadstein, 2000; but see

Godwin & Cotner, 2015) (Figure 6). Based on their C to nutrient sto-

ichiometry, heterotrophic bacteria can be considered high-quality

food items for P-demanding zooplankton, but, in the context of cell

wall properties (digestibility) and fatty acid profiles, they will be less

rewarding food (Martin-Creuzburg, Sperfeld, & Wacker, 2009; Zelles,

1999).

The implications of browning for food webs via nutrient stoi-

chiometry, therefore, vary as DOM loads increase. Higher DOM con-

centrations in clear oligotrophic lakes will provide nutrients that, in

addition to promoting biomass production, will increase the nutrient

content of phytoplankton, thereby decreasing C to nutrient ratios at

the basal level in the pelagic food web. During the shift from an

autotrophic, phytoplankton-dominated basal production to a hetero-

trophic, bacteria-dominated basal production (as described in Fig-

ure 5), higher DOM concentrations may result in a continued decline

of C to nutrient ratios at the basal trophic level. Even though brown

lakes have phytoplankton species adapted to high-DOM conditions,

the already bacteria-dominated food web will shift toward even

greater bacterial dominance (Faithfull, Mathisen, Wenzel, Bergstr€om,

& Vrede, 2015). Accompanying this increase in bacterial biomass are

declines in C:N and C:P ratios of the food for consumers as well as

a decrease in food web transfer efficiency (Deininger, Faithfull,

Karlsson, Klaus, & Bergstrom, 2017; Jansson, Karlsson, & Blomqvist,

2003) (Figure 6). Currently, we do not know what threshold in DOM

concentration marks this fundamental food web shift from reliance

on autotrophic production to reliance on heterotrophic bacterial pro-

duction supported by terrestrial DOM.

6 | GREATER RISK OF LIMITING SUPPLY
OF ESSENTIAL FATTY ACIDS

As terrestrial subsidies of DOM increase—provoking a shift from

autotrophic to heterotrophic-basal productions—we hypothesize

there is a reduction in the production and transfer of high-quality

EFA, especially polyunsaturated fatty acids (PUFAs). This decline in

EFA is being caused by one or more of three drivers: a reduction in

phytoplankton biomass, an associated dilution of the remaining EFA

caused by an increase in bacterial biomass, or an increase in the pro-

portion of cyanobacteria (Figure 7).

Ecosystem shifts in the relative importance of allochthonous C

due to changes in DOM fluxes may change the quality and quantity

of food resources for higher trophic levels. The efficiency of energy

transfer in food webs depends both on food quantity and food qual-

ity (M€uller-Navarra, 2008), the interactions between the two (Pers-

son, Brett, Vrede, & Ravet, 2007), and the pathways by which

energy and biochemicals are transferred (Jansson, Persson, De Roos,

Jones, & Tranvik, 2007; M€uller-Navarra, 2008). Current food quality

research examines not only elemental stoichiometry (cf. above) but

also the importance of other biochemicals such as PUFAs (Arts,

Brett, & Kainz, 2009).

Dissolved organic matter resources that support biomass produc-

tion in lakes differ substantially in the concentration of high-quality

PUFAs, which are important EFAs. The lipids produced by auto-

trophs are a major component of the dietary needs of primary con-

sumers (Guschina & Harwood, 2009). Autotrophs synthesize PUFAs

de novo and contain important long-chained PUFAs, such as
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eicosapentaenoic acid (EPA 20:5x3) and docosahexaenoic acid

(DHA, 22:6x3) (Lau, Sundh, Vrede, Pickova, & Goedkopp, 2014;

M€uller-Navarra, 2008). EPA and DHA are absent in most terrestrial

autotrophs and therefore also in allochthonous particulate organic

matter (POM) (Brett, Taipale, & Heshan, 2009; Wenzel et al., 2012),

and are either absent or present in low quantities in aquatic hetero-

trophs and cyanobacteria (M€uller-Navarra, 2008). Therefore, aquatic

algae are the principal source of EPA and DHA for aquatic con-

sumers (Gladyshev, Sushchik, & Makhutova, 2013). EPA and DHA

are structurally integral for cell membranes and for growth and

reproduction in consumers (Parrish, 2009; Sargent, Bell, Hendersen,

& Tocher, 1995). As primary consumers are unable to synthesize

PUFA themselves, consumers rely on their food for the provision of

these lipids (M€uller-Navarra, 2008).

Polyunsaturated fatty acids are a major determinant of energy

transfer efficiency (M€uller-Navarra, Brett, Liston, & Goldman, 2000),

with transfer efficiencies twice those of other C compounds that are

primarily consumed and respired (Gladyshev et al., 2011). This

results in the preferential retention and progressive enrichment of

PUFAs at each successive trophic level (Brett, Muller-Navarra, &

Presson, 2009; Persson & Vrede, 2006). The concentration of PUFAs

in phytoplankton is linked to nutrient status (Galloway & Winder,

2015), with lower concentrations found in phytoplankton under N

limitation (Ahlgren & Hyenstrand, 2003) or in lakes with low N con-

tent (Gutseit, Berglund, & Gran�eli, 2007). The composition of PUFAs

is also linked to the nutrient status of phytoplankton, with the con-

centration of EPA reduced in phytoplankton under P limitation

(Gulati & DeMott, 1997; Sundbom & Vrede, 1997). Terrestrial sub-

sidies of DOM to northern clear oligotrophic lakes are increasing

nutrient availability associated with the DOM, stimulating primary

production, and therefore increasing the concentration of PUFAs (cf.

Lau, Goedkoop, & Vrede, 2013) as long as light is not limiting. The

composition of PUFAs is further affected by increasing water tem-

perature, which reduces high-quality PUFA production by phyto-

plankton (Hixson & Arts, 2016).

A shift from benthic and algal basal production dominated lake

ecosystems to pelagic and bacterial basal production dominated lake

ecosystems will be expected to have consequences in the transfer of

PUFAs to higher trophic levels. First, the lower transfer efficiency of

bacterial compared to algal basal production will reduce the

resources available for most consumers, reducing the transfer of

PUFAs. Second, a shift from PUFA-rich autotrophs to comparatively

PUFA-poor heterotrophs will further reduce the pool of PUFAs.

Both the decrease in biomass and its nutritional content will induce

a shift from PUFA-rich food webs in oligotrophic, clear-water lakes

to PUFA-poorer food webs in humic lakes (Figure 7). Terrestrial

inputs of DOM to brown-water lakes are unlikely to increase the

concentration of PUFAs, as phytoplankton and therefore PUFA avail-

ability to consumers, are heavily diluted by high concentrations of

PUFA-poor allochthonous POM and heterotrophic bacteria (Wenzel

et al., 2012) (Figure 7). Evidence for this is the declining proportions

of EPA and DHA found in perch muscle with increasing lake DOM

content (Taipale et al., 2016).

The extent to which allochthonous DOM supports the growth of

consumers has been debated in the scientific literature. One perspec-

tive is that allochthonous DOM and POM do not support production

of aquatic consumers; instead, the higher quality autochthonous POM

(i.e., algae) that contains EPA and DHA is required to support

zooplankton production (Brett, Taipale, et al., 2009). A contrasting

perspective is that allochthonous POM and DOM can support

zooplankton and fish production (Cole et al., 2006, 2011; Tanentzap

et al., 2017). Both radiotracer (Hessen et al., 1990) and stable isotope

analysis (Grey, Jones, & Sleep, 2001; Karlsson et al., 2015; Solomon

et al., 2011; Tanentzap et al., 2017) studies clearly demonstrate that

allochthonous DOM can be a substantial source of C. An emerging

perspective is that both organic matter sources support zooplankton

production, with allochthonous DOM contributions ranging from a

few percent to the majority of zooplankton biomass (Tanentzap et al.,

2017; Wilkinson, Carpenter, Cole, Pace, & Yang, 2013). Brett et al.

(2017) reconciled these differing perspectives by arguing that it is

the PUFA composition of a C resource, which differs between

terrestrial and aquatic primary producers, rather than its origin or

concentration that is the key determinant of C uptake rate and

growth efficiency by consumers. When autochthonous resources are

in ample supply, uptake of autochthonous resources enhances uptake

of allochthonous C (Guillemette, Leigh, & Del, 2016). In contrast,

when autochthonous resources are in low supply, autochthonous

DOM is preferentially allocated to anabolic processes rather than

catabolic processes, allowing consumers to survive periods of low

nutrient availability (Wetzel et al., 1995). Interestingly, in bacteria, the

opposite may be true, with autochthonous DOM preferentially allo-

cated to catabolic processes and allochthonous DOM preferentially

allocated to anabolic processes (Guillemette et al., 2016).

F IGURE 7 Hypothesized relationship between dissolved organic
matter (DOM) concentration and biomass quality, based on essential
fatty acid (EFA) content. The broad range in EFA at low-DOM
concentrations is a function of differences in EFA among
phytoplankton species (i.e., food quality), whereas at increased DOM
concentrations, reduced EFA is a consequence of reduced primary
production (i.e., food quantity) and the subsequent shift to
heterotrophic-based production
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The community composition of zooplankton may determine how

efficiently PUFAs are transferred to fish (cf. Jansson et al., 2007).

Zooplankton differ in their feeding modes (Berggren et al., 2014),

and there is evidence that suggests that EPA and DHA content may

be taxon-specific, reflecting these different feeding modes (Persson

& Vrede, 2006). For example, a significant decrease in biomass pro-

duction in the filter-feeder Daphnia has been linked to the lack of

PUFAs when terrestrial DOM subsidies are their major C source

(Brett, Taipale, et al., 2009). EPA has been found to be limiting for

Daphnia both in nutrient-poor lakes (total P < 4 lg/L) where phyto-

plankton biomass is small, as well as in nutrient-rich lakes (total

P > 25 lg/L) when cyanobacteria make up a large proportion of the

phytoplankton (Persson et al., 2007). However, an increase in terres-

trial DOM subsidies may not compromise the transfer of PUFAs to

consumers, unless phytoplankton represent a negligible proportion

of their diets (Brett, Taipale, et al., 2009), or if cyanobacteria with

small concentrations of EPA make up a large proportion of the

phytoplankton.

7 | GREATER RISK OF INCREASED
EXPOSURE TO CYANOBACTERIA TOXINS

As terrestrial contributions of DOM increase—reflecting a shift from

biolabile DOM (with weak metal-binding capacity) to refractory

DOM (with strong metal-binding capacity)—we hypothesize that

these differences in DOM characteristics will initiate shifts in phyto-

plankton community composition. Changes are favoring cyanobacte-

ria that can access nutrients bound to DOM in oligotrophic lakes

that experience increases in relatively biolabile DOM, promoting

their dominance and toxin production (Figure 8).

Changes in DOM are implicated in changes in phytoplankton

community composition (Sterner, Elser, & Hessen, 1992). In many

northern regions, the prevalence of cyanobacteria in lakes is occur-

ring more frequently and with increasing intensity (Winter et al.,

2011). While the presence of cyanobacteria in nutrient-rich,

eutrophic lakes is well known (Chorus, Falconer, Salas, & Bartram,

2000), the drivers initiating cyanobacteria blooms in these nutrient-

poor, oligotrophic lakes are not known. High temperatures are

known to promote toxin-producing cyanobacteria blooms (Davis,

Berry, Boyer, & Gobler, 2009); however, despite the rates of

increase in surface water temperature of about 1.3°C per decade

(O’Reilly et al., 2015), the relatively low temperatures of northern

lakes are not expected to reach the high (20°C) temperature opti-

mum that is conferring a significant advantage to bloom-forming

cyanobacterial species (J€ohnk et al., 2008; Paerl & Huisman, 2008).

Given that many of these northern regions have low direct inputs of

N and P, we focus on the less well-understood change in DOM as a

potential initiator of cyanobacteria blooms and the production of

toxins in these blooms (Sorichetti et al., 2014). While our focus is on

cyanobacteria due to their toxin-formation potential, there is evi-

dence that other members of the phytoplankton community that are

capable of producing noxious metabolites (including chrysophytes

and raphidophytes) also benefit from increases in DOM loading

(Paterson, Cumming, Smol, & Hall, 2004; Trigal, Hallstan, Johansson,

& Johnson, 2013).

Changes in DOM may alter competition between phytoplankton

species, resulting in a change in phytoplankton community structure.

An increase in DOM alters the light regime of surface waters (Pat-

tanaik, Wulff, Roleda, Garde, & Mohlin, 2010) by absorbing poten-

tially damaging UV, and creating a shallow zone for PAR that

benefits positively buoyant cells. An euphotic zone with these char-

acteristics is highly selective for cyanobacteria. Furthermore, a large

input of N-rich DOM, followed by a substantial drawdown of N,

may create a nutrient environment beneficial to N2-fixing cyanobac-

teria (Rolff, Almesj€o, & Elmgren, 2007). Finally, the metal-binding

properties of DOM can either increase or decrease the availability of

trace metals required for cyanobacterial growth. In the simplest

model, DOM can provide required metals from terrestrial sources to

the lake (e.g., Fe or copper) that may become available by dissocia-

tion from the organic ligand once in surface waters, particularly dur-

ing photolysis of DOM (Shiller, Duan, van Erp, & Bianchi, 2006). In

the case of Fe, DOM could be supplying a potentially growth-limit-

ing metal, but in the case of copper, DOM may be elevating copper

to potentially toxic concentrations. Both processes may select for

cyanobacteria, given their high Fe requirement and, at least for some

species, high tolerance of metals (Sorichetti et al., 2014; Twiss, Wel-

bourn, & Schw€artzel, 1993). In contrast, copper is unaffected, but Fe

becomes increasingly growth limiting as phytoplankton biomass

increases. This increase in Fe limitation is enhancing the competitive

F IGURE 8 Hypothesized relationship between dissolved organic
matter (DOM) composition and contaminant (toxin and Hg) content
in food webs. Biolabile DOM supplies Fe that is available for
cyanobacteria growth (thereby exposing toxins to the food web).
Refractory DOM supplies Hg that must be removed primarily by
bacteria through methylation to access C for growth (thereby
providing methyl-Hg to the food web)
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advantage of cyanobacteria, as these cells respond to low Fe stress

by secreting their own Fe-binding organic ligands (i.e., siderophores)

(Wilhelm, 1995). Ultimately, cyanobacteria may produce sidero-

phores to outcompete other algae for a “pirated” pool of Fe (Rudolf

et al., 2015). This DOM–siderophore–Fe cycle is further supported if

photoreduction of Fe and formation of reactive oxygen species

occurs simultaneously.

In addition to these direct and indirect influences of DOM on

the growth of cyanobacteria, DOM may stimulate the formation of

cyanobacterial toxins, which in turn confers an ecological advantage

to the cyanobacteria population (O’Neil, Davis, Burford, & Gobler,

2012). Several hypotheses exist about the role of these toxins. For

example, it has been hypothesized that microcystins, the primary

human health concern from some cyanobacteria blooms, may act as

oxygen radical scavengers, protecting cyanobacteria cells from pho-

todegradation (Huguet, Henri, Petitpas, Hogeveen, & Fessard, 2013;

Puerto et al., 2010; W€ormer, Huerta-Fontela, Cir�es, Carrasco, &

Quesada, 2010; Zilliges et al., 2011). Therefore, elevated DOM in

combination with warmer and more stable lake waters—characteris-

tics associated with a changing climate—may accelerate toxin pro-

duction in prolonged cyanobacteria blooms (Dziallas & Grossart,

2011; Zilliges et al., 2011). It has also been hypothesized that toxins

are produced to access resources not available to competitors.

Microcystin may serve as an Fe chelator of moderate strength (Li,

2011; Saito, Sei, Miki, & Yamaguchi, 2008), binding Fe but without

the strength and specificity of a siderophore (Klein, Baldwin, & Sil-

vester, 2013). Fe limitation up-regulates the transcription of genes

involved in cyclic heptapeptide synthesis and the production of

microcystin (Lyck, Gjølme, & Utkilen, 1996; Neilan, Pearson,

Muenchhoff, Moffitt, & Dittmann, 2013; Utkilen & Gjølme, 1995).

With such a strong link between low Fe availability and microcystin

production, it is possible that microcystin serves to modulate Fe–or-

ganic complexes in situ, reducing the Fe transport or scavenging

ability of competing cells, and enhancing the success of cyanobacte-

ria that can use complexed Fe. Both DOM and microcystin can

serve as a temporary Fe buffer, resulting in the release of low levels

of Fe that is best obtained by small cells with a high affinity for free

Fe (i.e., cyanobacteria). An alternative hypothesis is that toxins are

not related to a physiological function, but instead are simply pro-

duced as metabolic waste products that result from unbalanced

incorporation of nutrients (Van de Waal, Smith, Declerck, Stam, &

Elser, 2014). If so, changes in DOM concentration and composition,

including the supply of bioavailable macro- and micronutrients, are

having unpredictable consequences in terms of toxin levels, as many

factors can lead to unbalanced growth.

Urrutia-Cordero, Ekvall, and Hansson (2016) considered the

impact of temperature and brownification on cyanobacteria presence

and toxin levels in a northern Swedish lake. Using both experimental

and modeling approaches, they determined that the synergistic inter-

action of temperature and brownification results in an increase in

cyanobacteria and microcystin toxin levels. While the mechanisms

for cyanobacteria and toxin stimulation were not investigated, the

multistressor approach reveals the complexity of ecological interac-

tions that are associated with brownification.

The preceding discussion suggests that the combination of cli-

mate change-driven temperature changes and the shift to more

allochthonous DOM are likely to result in an increase in cyanobac-

teria biomass in lakes. Increases in DOM load, with associated

increases in energy and macro- (organic N and P) and micronutri-

ents (Fe), favor cyanobacteria with their mixotrophic capacities

(Maranger & Pullin, 2003). A subgroup of phytoplankton (primarily

phytoflagellates, mixotrophic flagellates, and cyanobacteria) that

benefit from the mixotrophic potential that DOM provides, popu-

lates DOM-rich waters. Their ability to use this alternate form of

energy will enable these cells to outcompete strict autotrophs in

waters with low concentrations of inorganic nutrients (Beamud,

Karrasch, & Diaz, 2014; Flynn et al., 2013; Glibert & Legrand,

2006; Gran�eli, Carlsson, & Legrand, 1999; Monchamp, Pick, Beisner,

& Maranger, 2014; Ou, Lundgren, Lu, & Gran�eli, 2014), or to use

alternative sources of N such as DON to satiate the N needs of

the otherwise autotrophic cells. DON-containing organic materials

as simple as urea have been recently implicated as an alternative

source of N linked to an increase in cyanobacteria blooms over the

past decade (O’Neil et al., 2012). These changes may also result in

higher rates of production of toxins in toxin-producing cyanobacte-

ria, either to access these macro-/micronutrients (via intracellular or

extracellular ligands) or to outcompete other algae (Van de Waal

et al., 2014).

Given the expected ascendance of cyanobacteria, climate

change-driven changes in cyanotoxin exposure in food webs of

northern lakes are expected. Cyanotoxins are a chemically diverse

group of metabolites that may enter and traverse a food web

through a variety of pathways. These pathways are complex. Direct

exposure to cyanotoxins has been known to exert negative effects

on species from every trophic level (Drobac et al., 2016; Ferr~ao-Filho

& Kozlowsky-Suzuki, 2011). Toxin exposure within the food web

could occur through: (1) absorption of toxins directly from water

(Karjalainen, Reinkainen, Lindvall, Spoof, & Meriluoto, 2003; Miller

et al., 2010); (2) consumption of toxin-containing particulate matter

(de Maagd, Hendriks, Seinen, & Sijm, 1999); (3) consumption of

cyanobacteria (Lance, Neffling, Gerard, Meriluto, & Bormans, 2010;

Rohrlack et al., 2005); and (4) consumption of consumers of

cyanobacteria (Berry, Lee, Walton, Wilson, & Bernal-brooks, 2011).

Due to the water-soluble nature of the most common cyanotoxins,

there is a general trend of biodilution in food webs (i.e., a decrease

in toxins with each increase in trophic level) (Berry, 2013; Ferr~ao-

Filho & Kozlowsky-Suzuki, 2011; Kozlowsky-Suzuki, Wilson, &

Ferr~ao-Filho, 2012). Despite this trend of biodilution, there is evi-

dence of bioconcentration at lower trophic levels (Poste & Ozersky,

2013; Umehara et al., 2017; Zhang, Xie, & Wang, 2016) and trophic

transfer of toxins (Berry, 2013; Ferr~ao-Filho & Kozlowsky-Suzuki,

2011; Kozlowsky-Suzuki et al., 2012; Sotton et al., 2014). The

potential consequences of food web-scale chronic exposure to cyan-

otoxins remain unknown (Berry, 2013).
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8 | GREATER RISK OF MERCURY
CONTAMINATION

As terrestrial subsidies of DOM increase, accompanied by a shift

from biolabile DOM (with lower aromaticity and therefore sulfur

content) to refractory DOM (with higher aromaticity and sulfur con-

tent), we hypothesize that methylation and methyl-Hg uptake by

heterotrophic bacteria is increasing. This trend will continue until the

binding-strength threshold is reached in which DOM effectively

sequesters Hg, preventing its release to the food web (Figure 8).

Mercury has both geological and anthropogenic sources and is

present in the environment mainly as elementary Hg (Obrist et al.,

2017), inorganic (Hg(II)), and organic (methyl-Hg) forms. Both latter

forms of Hg can complex to DOM (Haitzer, Aiken, & Ryan, 2002;

Ravichandran, 2004), but methyl-Hg is more toxic to organisms

(Wiener, Krabbenhoft, Heinz, & Scheuhammer, 2003). Once the

complexes are formed, DOM influences the fate of Hg in aquatic

systems by controlling its transport through the catchment, cycling

within the lake, and chelating the Hg for photolysis and photoreduc-

tion (Haitzer et al., 2002). All these factors influence the speciation,

mobility, bioavailability, and toxicity of Hg (Sobczak & Raymond,

2015). Therefore, lakes that are predicted to experience an increase

in DOM loads may be at greater risk of higher methyl-Hg bioconcen-

tration and biomagnification in their food webs (Lavoie, Jardine,

Chumchal, Kidd, & Campbell, 2013; Wiener et al., 2003).

In catchments, transport of DOM-complexed Hg is highest under

warmer and wetter conditions (Dittman et al., 2010; Kirtman et al.,

2013; Mierle & Ingram, 1991; Shanley et al., 2008), when the upper

soil horizon is saturated, and the landscape is hydrologically con-

nected to the aquatic network (Dittman et al., 2010; Shanley et al.,

2008). Hg methylation by sulfate-reducing bacteria from bioavailable

Hg(II) occurs when DOM-Hg(II) complexes reach reducing zones (Gil-

mour, Henry, & Mitchell, 1992). Hg methylation occurs on the land-

scape (in wetland sediments and stream riparian soils) as well as in

anoxic lake sediments. It has been shown that allochthonous methyl-

Hg represents a higher proportion of bioconcentrated Hg due to

higher inputs of DOM-bound Hg in comparison to in-lake methy-

lated Hg (Jonsson et al., 2014). This is partly due to the enhanced

solubility of methyl-Hg bound to the sulfur-containing thiol groups

of DOM (Watras et al., 1998). Allochthonous methyl-Hg is reported

to be taken up at faster rates than in situ methylated Hg both in

lakes and estuaries (Bravo et al., 2017; Jonsson et al., 2017). How-

ever, highly aromatic (i.e., refractory) fractions of allochthonous

DOM bind Hg strongly in its thiol groups, keeping it in solution but

reducing its availability for subsequent reactions or uptake (Haitzer

et al., 2002; Ravichandran, 2004).

Northern lakes may be at greater risk of higher trophic transfer

of methyl-Hg, due to cooler temperatures that reduce growth of

organisms leading to the bioconcentration of mercury, and a

decrease in the complexity of northern food webs which can

increase biomagnification (Lavoie et al., 2013). Methyl-Hg biocon-

centrates in lower trophic levels and biomagnifies through food webs

(Wiener et al., 2003). Higher Hg is generally found in greater

concentrations in fish and invertebrates from systems with greater

DOM concentrations (Driscoll et al., 1995; Rennie, Collins, Purchase,

& Tremblay, 2005). This is likely due to the effects of DOM on

increasing Hg(II) availability to methylating bacteria (Graham, Aiken,

& Gilmour, 2013; Hsu-Kim, Kucharzyk, Zhang, & Deshusses, 2013)

and increasing methyl-Hg uptake by algae (Le Faucheur, Campbell,

Fortin, & Slaveykova, 2014), with subsequent transfer to higher

trophic levels (Hall, Bodaly, Fudge, Rudd, & Rosenberg, 1997).

Three main factors are likely increasing the concentrations of

methyl-Hg in the base of the food web. First, increased allochtho-

nous DOM inputs may result in increased methyl-Hg loading and

production (e.g., Graham, Aiken, & Gilmour, 2012) due to increased

dissolution of Hg at higher DOM concentrations (Brigham, Wentz,

Aiken, & Krabbenhoft, 2009; Gerbig, Ryan, & Aiken, 2012). Second,

DOM-stimulated heterotrophic bacteria may increase their methyl-

Hg uptake (Ravichandran, 2004). The low growth efficiency of het-

erotrophic bacteria in oligotrophic lakes increases the number of C

transfers through the microbial food web (Cotner & Biddanda, 2002)

and, although speculative, may affect the fate of Hg. The aromatic

nature of DOM is a key predictor of Hg methylation (Graham et al.,

2013; Moreau et al., 2015). Methyl-Hg uptake may increase with

DOM inputs of increasing aromaticity, sulfur content, and molecular

weight, which are related to the greatest methylation of Hg by bac-

teria and subsequent formation of DOM–Hg complexes (Graham

et al., 2013; Moreau et al., 2015). However, reductions in Hg uptake

by bacteria and primary producers may occur if there is a shift to

even larger and more refractory allochthonous DOM in lakes (Luen-

gen, Fisher, & Bergamasch, 2012), either because the molecules are

too large to pass through cell membranes (Ravichandran, 2004;

Schartup, Ndu, Balcom, Mason, & Sunderland, 2015), or due to

reduced DOM bioavailability and increased binding strength (French

et al., 2014). This implies a “sweet spot” for Hg uptake, wherein

DOM is refractory enough such that methylation can occur, and the

molecular composition of the DOM-Hg complex does not inhibit its

uptake. Third, the greening of the northern hemisphere, with changes

in forest composition from coniferous species with more refractory

litter to deciduous species with more biolabile litter, may result in

greater methyl-Hg production and uptake at the base of the food

web in aquatic systems because of higher rates of microbial activity

with biolabile C (see previous point, and Morel, Kraepiel, & Amyot,

1998; Benoit, Gilmour, Heyes, Mason, & Miller, 2003).

9 | RESEARCH PRIORITIES

Major technological advances have been recently made in the char-

acterization of DOM, laying the groundwork for scientists to cross-

disciplinary boundaries and adopt a systems approach to improve

understanding the effects of DOM on the physical, chemical, and

biological processes in lakes and their implications for human health

and well-being.

Improved understanding of how DOM is being influenced by our

changing world is needed to enhance the effectiveness of lake
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management. Key advances in understanding will require interdisci-

plinary efforts that lead to process-based knowledge of DOM

dynamics in heterogeneous landscapes, that explore the role of

changing climate, atmospheric pollution, and terrestrial ecosystems,

and that consider internal interactions and feedbacks in elemental

cycles and food web dynamics. At stake are social and economic

activities such as fishing, swimming, and recreation, as well as the

safety of drinking water supplies.

At the core of these interdisciplinary efforts is the need to link

DOM composition to ecosystem structure and function. Beyond the

much-studied impacts of greater inputs of DOM to lakes, issues of

nutrient availability for the production base (whether algal or bacte-

rial), stoichiometry, essential biochemicals for consumers, toxins,

and Hg bioaccumulation, are related to DOM composition. DOM as

a complex mixture of molecules that vary with origin and age, are

notoriously difficult to fully characterize (Kellerman, Dittmar, Kotha-

wala, & Tranvik, 2014), although there has been recent progress in

this context (Minor, Swenson, Mattson, & Oyler, 2014). For exam-

ple, simple spectroscopic analysis of whole water samples has

proved to be a quick and reliable method that can provide inter-

pretable information about average chromophoric DOM source and

reactivity (Jaff�e et al., 2008). An understanding of nonchromophoric

fractions of the DOM pool has been advanced by isolation methods

employing size fractionation. For example, ultrafiltration or chro-

matographic separation based on hydrophobicity and acid/base

properties allow for a finer fractionation of DOM and yield quanti-

ties of distinct DOM fractions that can be studied by spectroscopic

methods such as 13C-NMR spectroscopy and by elemental and iso-

topic analysis (Matilainen et al., 2011). Furthermore, elemental and

structural characterization of some of the myriad organic molecules

comprising these DOM fractions, or the DOM in whole water, is

now possible through advancements in mass spectrometry (Oster-

holz et al., 2016; Woods, Simpson, Koerner, Napoli, & Simpson,

2011).

Unraveling DOM chemical characteristics will not in itself be

enough to understand the role of DOM in lake ecosystems. The vari-

ation in the chemical composition of allochthonous DOM may lead

to dissimilarities in the influence of DOM on aquatic organisms, with

potential alterations at the organismal level. Even when we have

detailed information on DOM chemistry, we do not know how to

interpret detailed differences in composition in terms of effect on

organisms (e.g., Rue et al., 2017). There is a need for improved pro-

cess-based knowledge that links DOM quantity and composition to

cellular process rates (e.g., stimulation, reduction, and bioaccumula-

tion) in different components of the food web. We envision a three-

pronged approach to address this challenge by conducting (1) labora-

tory experiments in which the DOM is characterized at a detailed

level (e.g., FT-ICR-MS), and (2) field comparisons to evaluate poten-

tial differences in the effects of allochthonous DOM on organisms.

By attacking these questions first from laboratory and field

approaches, we will be more successful to then develop testable

hypotheses that could be further evaluated in (3) lake-scale manipu-

lative experiments. This improved process-based knowledge must be

scaled to larger spatial scales (catchments to regions) and time scales

(days to decades to centuries).

Process-based knowledge of landscape controls on the fate of

DOM is needed, tracking changes in DOM concentration and com-

position as it moves from land to lakes. Several papers suggest a

predominantly recent origin of DOM (Butman, Raymond, Butler, &

Aiken, 2012; Marwick et al., 2015), pointing to strong temporal cou-

pling of terrestrial C-fixation and aquatic DOM (Finstad et al., 2016).

Fresh DOM is inherently less recalcitrant to microbial mineralization

as well as more susceptible to photo-oxidation. It, therefore, serves

as a major source of CO2 outgassing from freshwater ecosystems

(Mayorga et al., 2005). A deeper understanding of this terrestrial–

aquatic coupling on multiple temporal scales is important because

changes in temperature and precipitation are affecting all drivers of

DOM dynamics from landscape to organismal scales. For example,

how changes in vegetation structure of upland ecosystems are

affecting DOM composition reaching lakes, eventually cascading

through food webs, is poorly known. Similarly, although work on

permafrost degradation has suggested likely impacts on DOM trans-

port, changes in the composition of released DOM and how it is

affecting recipient ecosystems is poorly known.

Global change effects on DOM in northern lakes are likely more

about hydrologic change (e.g., changes in precipitation, the frequency

and magnitude of extreme events, and the seasonality of rainfall,

snow melt, or droughts and floods) and increased hydrologic connec-

tivity, than about direct effects of temperature change (cf. de Wit

et al., 2016). These global change-driven hydrologic changes are

altering not only how DOM enters via hydrologic pathways, but also

its fate, which are influenced by water and nutrient retention times,

the location and occurrence of hotspots and hot moments, and food

web dynamics (Grimm et al., 2013; Groffman et al., 2014; Wood-

ward, Perkins, & Brown, 2010; Zwart, Sebestyen, Solomon, & Jones,

2017). Recent studies have confirmed that intensification of the

hydrologic cycle affects DOM transport and loading (Raymond &

Saiers, 2010), including both enhanced inputs to lakes during

extreme precipitation events with subsequent impacts on food webs

(Zwart et al., 2017) and reduced connectivity during droughts (Szko-

kan-Emilson et al., 2017). However, while we know at least some of

the impacts of changing hydrology on DOM content, we know less

about the consequences on DOM composition and even less about

consequences for bioavailability in lakes. More work is needed to

link climate-driven changes in hydrology with the composition, stoi-

chiometry, and reactivity of DOM.

The role of allochthonous inputs of DOM as the trophic basis of

lake productivity remains contested, and our review has pointed to

some conflicting literature findings. Survey results indicate that

browning tends to reduce productivity at primary and higher trophic

levels (e.g., Craig, Jones, Weidel, & Solomon, 2017; Kelly et al.,

2014), but recent experimental manipulations of DOM inputs (albeit

a smaller concentration increase than the surveys encompassed)

showed a positive impact on both phytoplankton and zooplankton

productivity (Kelly et al., 2016; Zwart et al., 2017). Conflicting

results highlight the need for more experimental studies, improved
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understanding of the link between DOM and changes in light and

nutrient availability, and documentation of contexts that may condi-

tion the response to DOM inputs. In other words, we need to do

more than document the pattern of change in food webs with

browning; we need to understand the processes behind these pat-

terns, which entails work in both source and recipient ecosystems.

Although challenging, process-based understanding of the effects

of terrestrial organic matter inputs on whole-lake ecosystems calls

for large-scale experimentation, integrating abiotic and biotic pro-

cesses in benthic and pelagic habitats. Also, progress should be

focused on improving understanding of the bioavailability of specific

essential elements (e.g., N, P, Fe) and pollutants (e.g., Hg) complexed

to or contained within DOM, especially under changing environmen-

tal conditions like pH and redox (Bravo et al., 2017). For example, if

aromatic DOM binds Hg strongly to its thiol groups, then the bacte-

rial uptake of (and perhaps growth efficiency on) aromatic DOM is

important for understanding bioaccumulation of DOM-bound Hg.

Yet, there is no consensus on the use of allochthonous aromatic

DOM by bacteria. Some studies report very low immediate bioavail-

ability of allochthonous DOM (e.g., 2% in Soares et al., 2017), but

interactions with sunlight and a variety of other extrinsic factors can

prime the bioavailability. Improved understanding of these interac-

tions is needed.

There is also a need to improve understanding of the microbial

competition for nutrients and EFAs that are incorporated into organic

molecules within the DOM pool, and how the outcome of this compe-

tition may influence their accumulation in the food web (Brett et al.,

2017)—as well as lead to selection of phytoplankton species that pro-

duce toxins that may be accumulated in the food web. At stake is not

only the structure and functioning of lakes, but the safety and security

of drinking water and freshwater fish resources.

10 | CONCLUSION

Climate change variations in northern terrestrial ecosystems are

appreciable—from lengthening growing seasons, to changes in spe-

cies composition from coniferous to deciduous, to changes in growth

stoichiometry associated with elevated levels of CO2. These changes

to the forest biome are accompanied by changes in the hydrologic

cycle that are affecting the delivery of water, particulate and dis-

solved organic material, and nutrients to surface waters. Increased

delivery of DOM is further leading to region-wide browning of fresh-

waters. The freshwater issue of browning introduces substantial

uncertainty in projecting future productivity of lakes under climate

change. The climate-driven shift to greater predominance of terres-

trially derived DOM that is more biorefractory, aromatic, larger in

size, and higher in molecular weight than lake-derived DOM is

having substantial effects on physiochemical properties of lakes,

further influencing lake productivity and the nutritional quality of

production. It also means reduced water quality for human con-

sumption. The consequence of these changes at the ecosystem

level is uncertain at present, but we have outlined several

pathways of likely impact, given our current state of knowledge.

Changes in DOM sources and inputs to northern lakes is initiating

a cascade of altered biological outcomes, including lakes with food

webs that are likely to be nutritionally poorer (lower EFAs, higher

toxins, and higher contaminants such as mercury). While these

changes are summarized by the term “browning,” real and realized

changes are altering the ecology and ecosystem services of north-

ern lakes.
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